Math, asked by sachiyadav255, 1 day ago

2x 95 70° 1202 989 90° (v) (vi) (vii) (viii) 7. The angles of a triangle are in the ratio of 2:5: 8. Find the angles. 8. One angle of a triangle is 50º and the other two ar in the ratio 6 : 7. Find the anales.​

Answers

Answered by Anonymous
10

Given :

  • The angles of a Triangle are in the ratio 2:5:8 .

 \\ \\

To Find :

  • Find the Angles

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

We know That :

  • Sum of Angles (Triangle) = 180°

 \\ \\

Let the Ratios :

  • ∠1 = 2y
  • ∠2 = 5y
  • ∠3 = 8y

 \\ \\

Calculating the Value of y :

 ➢ \qquad \; ∠1 + ∠2 + ∠3 = 180°

 \\ ➢ \qquad \; 2y + 5y + 8y = 180°

 \\ ➢ \qquad \; 7y + 8y = 180°

 \\ ➢ \qquad \; 15y = 180°

 \\ ➢ \qquad \; y = 180/15

  • Cancelling 180 by 15 :

 \\ ➢ \qquad \; {\red{\pmb{\underline{\underline{\frak{ y = 12 }}}}}}

 \\ \\

Calculating the Angles :

  • ∠1 = 2y = 2(12) = 24°
  • ∠2 = 5y = 5(12) = 60°
  • ∠3 = 8y = 8(12) = 96°

 \\ \\

Therefore :

The three Angles are 24° , 60° and 96° .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by BrainlyAnanya
84

Given Information :-

  • The angles of a triangle are in ratio 2 : 5 : 8

To Find :-

  • The value of angles

Concept Used :-

To solve this question, we will use the concept of angle sum property of a triangle is 180°. Using this concept, we get :-

  • ∠1 = 2x
  • ∠2 = 5x
  • ∠3 = 8x

Now, using the same concept we will obtain an equation, that is :-

 \sf \bigstar \:2x + 5x + 8x = 180^\circ

Now, we will equate it to get the required answer.

Solution :-

  \\ \sf \longrightarrow \: 2x + 5x + 8x = 180^\circ \\  \\  \\  \sf \longrightarrow \: 15x = 180^\circ \\  \\  \\  \sf \longrightarrow \: x =  \frac{180^\circ}{15}  \\  \\  \\  \sf \longrightarrow \: x =   \cancel\frac{180^\circ}{15}  = 12^\circ \\  \\

Now, we will put the value of x in their ratios and get the required answer.

  • ∠1 = 2x = 2 x 12 = 24°
  • ∠2 = 5x = 5 x 12 = 60°
  • ∠3 = 8x = 8 x 12 = 96°

Verification :-

For verification, we will add all the derived value and check if L.H.S. is equal to R.H.S.

 \\  \sf\longrightarrow 24^\circ + 60^\circ + 96 ^\circ= 180^\circ \\  \\  \\ \sf\longrightarrow 120 ^\circ+ 60 ^\circ= 180^\circ \\  \\  \\ \sf\longrightarrow 180 ^\circ= 180^\circ \:  \\  \\

Hence, verified.

───────────────────────────────────

Similar questions