Math, asked by arsha2861, 8 months ago

2x square-7x +3=0(solve by complete squaring method)​

Answers

Answered by Anonymous
76

\rule{200}3

\Huge{\red{\underline{\textsf{Answer}}}}

\large\purple{\sf 2x^{2} - 7x + 3 = 0}

Dividing by 2

\longrightarrow \large\sf \frac{2x^{2} \:- \:7x\: + \:3 \:=\: 0}{2} = \frac{0}{2}

\longrightarrow \large\sf \frac{\cancel{2x}^{2}}{\cancel 2} - \frac{7x}{2} + \frac{3}{2} = 0

\longrightarrow \large\sf x^{2} - \frac{7x}{2} + \frac{3}{2} = 0

\rule{200}3

We know that,

\large\orange{\sf (a - b)^{2} = a^{2} - 2ab + b^{2}}

Here, a = x and

\longrightarrow \large\sf - 2ab = \frac{7x}{2}

\longrightarrow \large\sf - 2xb = \frac{7x}{2} ( As a = x )

\longrightarrow \large\sf b = - \frac{7x}{2(-2x)}

\longrightarrow \large\sf b = \frac{7}{4}

\rule{200}3

Now, in equation

\longrightarrow \large\sf x^{2} - \frac{7x}{2} + \frac{3}{2}

Adding and substracting \large\sf (\frac{7}{4})^{2}

\longrightarrow \large\sf x^{2} - \frac{7x}{2} + \frac{3}{2} + (\frac{7}{4})^{2} - (\frac{7}{4})^{2}= 0

\longrightarrow \large\sf x^{2} + (\frac{7}{4})^{2} - \frac{7x}{2} + \frac{3}{2} - (\frac{7}{4})^{2} = 0

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2} + \frac{3}{2} - (\frac{7}{4})^{2} = 0

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2} + \frac{3}{2} - \frac{49}{16} = 0

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2} + \frac{3(8) - 49}{16} = 0

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2} + \frac{24 - 49}{16} = 0

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2} - \frac{25}{16} = 0

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2}  = \frac{25}{16}

\longrightarrow \large\sf \left( x - \frac{7}{4} \right)^{2}  = (\frac{5}{4})^{2}

\rule{200}3

Cancelling square both sides :-

\mapsto \large\sf x - \frac{7}{4} = \pm \frac{5}{4}

Case 1 :-

\blue\leadsto \large\blue{\sf x - \frac{7}{4} = \frac{5}{4}}

\blue\leadsto \large\blue{\sf x = \frac{5}{4} + \frac{7}{4}}

\blue\leadsto \large\blue{\sf x = \frac{5 + 7}{4}}

\blue\leadsto \large\blue{\sf x = \frac{12}{4}}

\pink\leadsto \large\boxed{\pink{\sf x = 3}} \orange\star

\rule{200}3

Case 2 :-

\green\leadsto \large\green{\sf x -\frac{7}{4} = -\frac{5}{4}}

\green\leadsto \large\green{\sf x = - \frac{5}{4} + \frac{7}{4}}

\green\leadsto \large\green{\sf x = \frac{-5 + 7}{4}}

\green\leadsto \large\green{\sf x = \frac{2}{4}}

\pink\leadsto \large\boxed{\pink{\sf \frac{1}{2}}} \orange\star

\rule{200}3

So the roots of the quadratic equation are

x = 3 and x = 1/2.

\rule{200}3

Similar questions