Math, asked by Dishe, 9 months ago

(2x - y + z.)^2 expand this​

Answers

Answered by Anonymous
41

Answer:

\sf{}4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4zx

Explanation:

Use identity :-

\sf{}( a + b + c )^{2}= a^{2}+b^{2}+c^{2}+2ab+2bc+2ca

Where

a=2x

b=-y

c=z

Therefore,

\rightarrow\sf{} (2x)^{2}+(-y)^{2}+z^{2}+2(2x)(-y)+2(-y)z+2z(2x)\\ \\\rightarrow \sf{}4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4zx\\ \\ \because \sf{} Expansion\ of\ (2x - y + z)^2\ is\ 4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4zx

Similar questions