Math, asked by vaidikachawda, 3 days ago

2x² - 5x + 7= 0 find the value of a and b from this classification​

Answers

Answered by steffiaspinno
1

The roots of the equation 2x² - 5x + 7= 0 are \alpha =\frac{5+i\sqrt{31 } }{4}  and \beta =\frac{5-i\sqrt{31 } }{4}

Explanation:

Given:

2x² - 5x + 7= 0

To find:

α and β

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

\beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

Solution:

==> 2x² - 5x + 7= 0

==> a = coefficient of x²

==> b = coefficient of x

==> c = constant

==> a = 2

==> b =-5

==> c=7

==> Substitute the values in the formula

==> \alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

==> \alpha =\frac{-(-5)+\sqrt{(-5)^{2}-4(2)(7) } }{2(2)}

==> \alpha =\frac{5+\sqrt{25-(8)(7) } }{4}

==>\alpha =\frac{5+\sqrt{25-56 } }{4}

==> \alpha =\frac{5+\sqrt{-31 } }{4}

==> \alpha =\frac{5+\sqrt{-1\times31 } }{4}

==>\alpha =\frac{5+\sqrt{i^{2} \times31 } }{4}

==>\alpha =\frac{5+i\sqrt{31 } }{4}

==>\beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

==>\beta =\frac{-(-5)-\sqrt{(-5)^{2}-4(2)(7) } }{2(2)}

==> \beta =\frac{5-\sqrt{25-(8)(7) } }{4}

==>\beta =\frac{5-\sqrt{25-56 } }{4}

==> \beta =\frac{5-\sqrt{-31 } }{4}

==> \alpha =\frac{5+\sqrt{-1\times31 } }{4}

==>\beta =\frac{5-\sqrt{i^{2} \times31 } }{4}

==>\beta =\frac{5-i\sqrt{31 } }{4}

The roots of the equation 2x² - 5x + 7= 0 are \alpha =\frac{5+i\sqrt{31 } }{4}  and \beta =\frac{5-i\sqrt{31 } }{4}

Answered by Harshini2323
0

Answer:

a is 2x power 2 b is 5x

Step-by-step explanation:

Similar questions