Math, asked by anil11kumar1975gmail, 1 year ago

√2x²-6x+2√2 find its sum of zeros and its products

Answers

Answered by MonarkSingh
2
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hello Friend}}}

Here is your answer
a =  \sqrt{2}  \\ b =  - 6 \\ c = 2 \sqrt{2}
Sum of zeros = -b/a
 =  - ( \frac{ - 6}{ \sqrt{2} } ) \\  =  \frac{6}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  = 3 \sqrt{2}
Product of zeros = c/a
 =  \frac{2 \sqrt{2} }{ \sqrt{2} }  \\  = 2
Hope it helps you
Answered by Anonymous
1
Dear Student!!!

Question:-

√2x²-6x+2√2 find its sum of zeros and its products?

Method of Solution;-

Given;-

Equation : √2x²-6x+2√2

Now,



 \mathsf Sum \: of \: Zeroes = \frac{ - b}{a} \: \implies \: \frac{ - (coefficient \: of \: x}{coefficient \: of \: {x}^{2} } \\ \\ \\ \mathsf Sum \: of \: Zeroes = \frac{6}{ \sqrt{2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{6 \sqrt{2} }{2} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 3 \sqrt{2}

\mathsf product \: of \: Zeroes = \frac{ c}{a} \: \implies \: \frac{ (constant \: \: term}{coefficient \: of \: {x}^{2} } \\ \\ \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \implies \: \frac{2 \sqrt{2} }{ \sqrt{2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } \\ \\ \: \: \: \: \: \: \: \: \implies \: \frac{4}{2} \\ \\ \: \: \: \: \: \: \: \: \: \implies \: 2

Hence, Sum of Zeroes = 3√2 and Product of Zeroes = 2
Similar questions