Math, asked by StarTbia, 1 year ago

2x²-6x+3 ; -3x²-x-4 ; 1+2x-3x²,Add the given algebraic expression using both horizontal and vertical methods. Did you get the same answer with both methods.

Answers

Answered by mysticd
37
Hi ,

Let A = 2x² - 6x + 3 ,

B = -3x² - x -4 ,

C = 1 + 2x - 3x² = -3x² + 2x + 1 ,

Horizontal method :

A + B + C

= (2x²-6x+3)+(-3x²-x-4)+(1+2x-3x²)

= 2x²-6x+3-3x²-x-4+1+2x-3x²

= 2x²-3x²-3x²-6x-x+2x+3-4+1

= (2-3-3)x² + ( -6-1+2)x + 0

= -4x² - 5x ------( 1 )

Vertical Method :

A + B + C

= 2x² - 6x + 3

- 3x² - x - 4

-3x² + 2x + 1
_____________
- 4x² - 5x + 0 ----( 2 )

_____________

From ( 1 ) and ( 2 ) , we conclude

that. By using both methods we

get the same answer.

I hope this helps you.

: )
Answered by abhi569
23
Given Equations : 2x² - 6x + 3 , 3x² - x - 4 , 1 + 2x - 3x²



Using horizontal method for adding the given expressions.


→ ( 2x² - 6x + 3 ) + ( - 3x² - x - 4 ) + ( 1 + 2x - 3x² )


→ 2x² - 6x + 3 - 3x² - x - 4 + 1 + 2x - 3x²


→ 2x² - 3x² - 3x² - 6x - x + 2x + 3 - 4 + 1


→ - 4x² - 5x



Using vertical method for adding the given expressions.{ 1 + 2x - 3x² = - 3x² + 2x + 1 }


2x² - 6x + 3
-3x² - x – 4
-3x² + 2x + 1
__________
- 4x² - 5x
__________



On comparing the result from both the methods we get that the answer from both the solution is same { - 4x² - 5x }.

 \:
Similar questions