Math, asked by ansh45425, 1 year ago

2x³+5x²-28x-15 zero are 3 plz solve full

Answers

Answered by Anonymous
17
☆☆heya your answer is here☆☆


Explanation:

f(x)=2x3−5x2−28x+15

By the rational root theorem, since f(x) has integer coefficients, any rational zeros must be expressible in the form pq for integers p,q with pa divisor of the constant term 15 and q a divisor of the coefficient 2 of the leading term.

That means that the only possible rational zeros of f(x) are:

±12,±1,±32,±52,±3,±5,±152,±15

Trying the first one we find:

f(12)=28−54−282+15=1−5−56+604=0

So x=12 is a zero and (2x−1) a factor:

2x3−5x2−28x+15

=(2x−1)(x2−2x−15)

To factor the remaining quadratic, find a pair of factors of 15 which differ by 2. The pair 5,3works, so:

x2−2x−15=(x−5)(x+3)

●●So the two remaining zeros are x=5 and x=−3

Answered by NeetuPrasad050
3

Answer:

Step-by-step explanation:

Attachments:
Similar questions
Math, 8 months ago