Math, asked by balovesbalabat, 8 months ago

2x³+5x²-3x+5 Help plssss​

Answers

Answered by SrijanShrivastava
0

f(x) = 2 {x}^{3}  + 5 {x}^{2}  - 3x + 5 = 0

Nature of roots:

Δ =  \frac{4 {( {5}^{2} - 3(2)( - 3) )}^{3} -  {(2 {(5})^{3}  - (27)  {2}^{2}  (5) + 9(2)(5)( - 3))}^{2}  }{27  \times {2}^{2} }

Δ =  - 7459 < 0

So,

x_{1} \in ℝ

Now, we can depress the cubic as following.

f(x)≡ {x}^{3}  +  \frac{5}{2}  {x}^{2}  -  \frac{3}{2} x +  \frac{5}{2}

f_{x}≡  (x +  \frac{5}{6} ) ^{3}   -  \frac{43}{12}  (x +  \frac{5}{6} ) +  \frac{265}{54}

 \implies  x_{real} =  -  \frac{5}{6}  +  \sqrt[3]{( \frac{ - 265}{108}) +  \sqrt{( \frac{265}{108} ) ^{2}  -  (\frac{43}{36} ) ^{3}  \:  }  }  +  \sqrt[3]{( \frac{ - 265}{108} ) -  \sqrt{(\frac{265}{108}) {}^{2}  - ( \frac{43}{36} ) ^{3}   \: } }

Therefore, the three roots are :

 x _{1} =  \frac{  - 5+ \sqrt[3]{ - 530 + 3 \sqrt{22377}  }  +  \sqrt[3]{ - 530 - 3 \sqrt{22377} } }{6}

x_{2,3} =  \frac{ - 10 +  \sqrt[3]{530 + 3 \sqrt{22377} } +  \sqrt[3]{530  - 3 \sqrt{22377} }  +  \sqrt{3} i( ±  \sqrt[ 3]{   530 + 3 \sqrt{22377} }   ∓ \sqrt[3]{ 530 - 3 \sqrt{22377} } )}{12}

Similar questions