Chemistry, asked by apondimama5, 4 months ago

2xy - 9x^2 + ( 2y + x^2 +1)dy/dx=0

Answers

Answered by varvijay88
0

Answer:

dy/dx=(3x^2-2xy)/(2y+x^2+1)

Answered by pulakmath007
1

SOLUTION

TO EVALUATE

  \displaystyle \sf{2xy - 9 {x}^{2} + (2y +  {x}^{2}  + 1) \frac{dy}{dx} = 0  }

EVALUATION

  \displaystyle \sf{2xy - 9 {x}^{2} + (2y +  {x}^{2}  + 1) \frac{dy}{dx} = 0  }

  \displaystyle \sf{ \implies \: (2xy - 9 {x}^{2} )dx+ (2y +  {x}^{2}  + 1) dy = 0  }

  \displaystyle \sf{ \implies \: (2xy dx +  {x}^{2}dy) - 9 {x}^{2} dx+ (2y  + 1) dy = 0  }

  \displaystyle \sf{ \implies \: d( {x}^{2}y) - 9 {x}^{2} dx+ (2y  + 1) dy = 0  }

On integration we get

  \displaystyle \sf{ \implies \int \: d( {x}^{2}y) -  \int \: 9 {x}^{2} dx+ \int (2y  + 1) dy = c  }

  \displaystyle \sf{ \implies  {x}^{2}y -  \: 9  .\frac{ {x}^{3} }{3}  +(2 . \frac{ {y}^{2} }{2}  + y) = c  }

  \displaystyle \sf{ \implies  {x}^{2}y -  \: 3  {x}^{3}   + {y}^{2} + y = c  }

Where C is integration constant

Hence the required solution is

 \boxed{  \displaystyle  \sf{  \:  \:  {x}^{2}y -  \: 3  {x}^{3}   + {y}^{2} + y = c  } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Solve the differential equation :-

(cosx.cosy - cotx) dx - (sinx.siny) dy=0

https://brainly.in/question/23945760

2. Find the complete integral of p-q=0

https://brainly.in/question/23947735

Similar questions