Math, asked by Anonymous, 10 months ago


let \: f(x) =  \sqrt{1 +  {x}^{2} }  \: then
1) f(xy) = f(x).f(y)
2) f(xy) ≥ f(x).f(y)
3) f(xy) ≤ f(x).f(y)
4) None of these

Choose the appropriate answer with explanation.​

Answers

Answered by Hiteshbehera74
2

Answer: (iii) i.e., f(xy) < f(x).f(y)

f(xy) =  \sqrt{1 +  {x}^{2} {y}^{2}  }  \\  {(f(xy)})^{2}   = (1) + ( {x}^{2} {y}^{2})  \\ f(x) =  \sqrt{1 +  {x}^{2} }  &gt;  &gt; (i) \\ f(y) =  \sqrt{1 +  {y}^{2} }  &gt;  &gt; (ii) \\  \\ multiplying \: (i) \: and \: (ii) \: we \: get

f(x).f(y) = ( \sqrt{1 +  {x}^{2} } )( \sqrt{1 +  {y}^{2} } ) \\  =  \sqrt{(1 +  {x}^{2} )(1 +  {y}^{2} )}  \\  =  \sqrt{1 +  {x}^{2}  +  {y}^{2}  +  {x}^{2} {y}^{2}  }  \\  =  \sqrt{ (1 +  {x}^{2}  +  {y}^{2} ) + ( {x}^{2}  {y}^{2} )}  \\  {(f(x).f(y)})^{2}  = (1 +  {x}^{2}  +  {y}^{2} ) + ( {x}^{2}  {y}^{2} )

Now it can be observed that, [f(x).f(y)]² > [f(xy)]²

Therefore, it can be concluded that f(x).f(y) > f(xy).

Thus, option 3.

Similar questions