-3,0,2 are the zeroes of the polynomial p (x)=x cube +(a-1)a square +bx+c then find a and c
Answers
Answered by
1
Answer:
Step-by-step explanation:
p(x)=x^3+(a-1)x^2+bx+c
p(-3)=(-3)^3+(a-1)(-3)^2+b(-3)+c=0
-27+9(a-1)-3b+c=0
-27+9a-9-3b+c=0
9a-3b+0-18=0
9a-3b+18=0----(1)
p(0)=(0)^3+(a-1)0+b(0)+c=0
c=0
p(2)=(2^3)+(a-1)(2^2)+2b+c=0
8+4(a-1)+2b=0
8+4a-4+2b=0
4a+2b+4=0--(2)
solve (1) and (2)
multiply (1) with 2 and (2) with 3
18a-6b+36=0
12a+6b+12=0
---------------------
30a=--48
a=-16/10=-1.6
substitute in (2)
4*-1.6+2b+4=0
-6.4+4+2b=0
-2.4=-2b
b=1.2
Answered by
3
Answer:
given solution comparison ax^+bx^+cx+c
- sum of roots alpha + beta + Gamma is = -b/ a
- -3+0+2=-(a-1)/1
- -1=-a-1
- -2=-a
- a=2
Similar questions