Math, asked by samar68, 1 year ago

√3= 1.732, √5= 2.236, √6=2.449, √10 =3.162 find √10-√5/√2

Answers

Answered by DaIncredible
7
Hey friend,
Here is the answer you were looking for:

Given,
√3 = 1.732
√5 = 2.236
√6 = 2.449
√10 = 3.162

So,
 \frac{ \sqrt{10} - \sqrt{5} }{ \sqrt{2} } \\

On rationalizing the denominator we get,

 = \frac{ \sqrt{10} - \sqrt{5} }{ \sqrt{2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } \\ \\ = \frac{ \sqrt{2}( \sqrt{10} - \sqrt{5} )}{ {( \sqrt{2} })^{2} } \\ \\ = \frac{ \sqrt{2} \times \sqrt{10} - \sqrt{2} \times \sqrt{5} }{2} \\ \\ = \frac{1.414 \times 3.162 - \sqrt{10} }{2} \\ \\ = \frac{4.471 - 3.162}{2} \\ \\ = \frac{1.309}{2} \\ \\ = 0.654(approx)

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

samar68: sorry
samar68: 0.655 is answer
DaIncredible: ohh bro
DaIncredible: it is approx na
Answered by aquialaska
2

Answer:

Value of \frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}\:is\:0.655

Step-by-step explanation:

Given: Value of √3 = 1.732 , √5 = 2.236 , √6 = 2.449 and √10 = 3.162

To find: value of \frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}

Consider,

\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}

=\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}

=\frac{(\sqrt{10}-\sqrt{5})(\sqrt{2})}{(\sqrt{2})(\sqrt{2})}

=\frac{2\sqrt{5}-\sqrt{2\times5}}{2}

=\frac{2\sqrt{5}-\sqrt{10}}{2}

=\frac{2(2.236)-(3.162)}{2}

= 0.655

Therefore, Value of \frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}\:is\:0.655

Similar questions