Math, asked by jrmanvith8886, 8 months ago

(√3-1) cosx+(√3+1) sinx=2
Solve by general solution

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

( \sqrt{3}  - 1) \cos(x)  + ( \sqrt{3}  + 1) \sin(x)  = 2

Dividing both side by 2√2

( \frac{ \sqrt{3}  - 1}{2 \sqrt{2} }) \cos(x)   + ( \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } ) \sin(x)  =  \frac{2}{2 \sqrt{2} }

We know, sin(5π/12)= (√3 + 1)/(2√2) and cos(5π/12) = (√3 - 1)/(2√2)

 \cos( \frac{5\pi}{12} )  \cos(x)  +  \sin( \frac{5\pi}{12} )  \sin(x)  =  \cos( \frac{\pi}{4} )

 \cos(x -  \frac{5\pi}{12} )  =  \cos( \frac{\pi}{4} )

 =  > x -  \frac{5\pi}{12}  = 2n\pi +  \frac{\pi}{4}  \:  \: or \:  \: x -  \frac{5\pi}{12}  = 2n\pi  -   \frac{\pi}{4}

 =  > x = 2n\pi +  \frac{3\pi }{4} \:  \: or \:  \:  x = 2n\pi +  \frac{\pi }{6}

Similar questions