Math, asked by kalika59, 9 months ago

3+2
13-15
V3-2
If x=
and y
V3+2
value of x2 + y2 + xy
find the​

Attachments:

Answers

Answered by TUSHARKUMARDAS
6

Answer:

THE VALUE OF

 {x}^{2}  +  {y }^{2}  + xy

IS 75

Step-by-step explanation:

X =

( \sqrt{3}  -  \sqrt{2} ) \div  (\sqrt{3}  +  \sqrt{2} )

Y =

( \sqrt{3 }  +  \sqrt{2} ) \div  (\sqrt{3}  -  \sqrt{2} )

THEN,

Rationalise the denominator of both x and y

(AFTER RATIONALISING THE DENOMINATOR)

X =

( \sqrt{3 }  -  \sqrt{2} ) {}^{2}

Y=

( \sqrt{3}  +  \sqrt{2} ) {}^{2}

THEN,

Find the value of X and Y

X=

3 - 2 \sqrt{6 }   + 2

BY THIS BELOW IDENTITY SOLVE:

( \sqrt{a}  -  \sqrt{b} ) {}^{2}  = a - 2 \sqrt{ab}  + b

Y=

3 + 2 \sqrt{6}  + 2

BY THIS BELOW IDENTITY SOLVE:

a + 2 \sqrt{ab}  + b

A.T.Q

 {x}^{2}  +  {y}^{2}  + xy

=(3 - 2 \sqrt{6}+2){}^{2} + ( 3 + 2 \sqrt{6}  + 2) {}^{2}  + (3 - 2 \sqrt{6}  + 2)(3 + 2 \sqrt{6 }  + 2

 =(9 + (4 \times 6) + 4) + (9 + (4 \times 6) + 4 )  + 3(3 + 2 \sqrt{6} + 2) - 2  \sqrt{6}  (3 + 2 \sqrt{6}  + 2) + 2(3 + 2 \sqrt{6}  + 2)

 = (37 + 37) + (9 + 6 \sqrt{6}  + 6 - 6 \sqrt{6}  - 24 - 4 \sqrt{6}   + 6 + 4 \sqrt{6}  + 4

 = 74 + 9 + 6 + 6 + 4 - 24

 = 75

IF I DON'T KNOW HOW TO RATIONALISE THAN FOLLOW THE STEPS BELOW:-

x =  (\sqrt{3}  -  \sqrt{2} ) \div  (\sqrt{3 }  -  \sqrt{2} )

(AFETER THAT MULTIPLY (ROOT 3 - ROOT 2) BOTH IN DENOMINATOR AND NUMERATOR

LIKE THIS:

( ( \sqrt{3}  -  \sqrt{2} )( \sqrt{3}  -  \sqrt{2} )) \div( ( \sqrt{3}   +  \sqrt{2} )( \sqrt{3}  -  \sqrt{2} ))

 = ( \sqrt{3}  -  \sqrt{2})  {}^{2}  \div 3 - 2 \\  =  (\sqrt{3 }  -  \sqrt{2} ) {}^{2}

LIKE THIS U CAN ALSO RATIONALISE Y

Attachments:
Answered by khushiRK
0

Answer:

hope the above answer would help you......

Similar questions