Math, asked by gupta48, 11 months ago

3-2√2/3+2√2=a+b√2 find the value of a and b​

Answers

Answered by aStusent
1

Hey there! Here is your answer.

 \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  =  \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} } \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  =  \frac{ {(3 - 2 \sqrt{2)} }^{2} }{  {3}^{2}  - ( {2 \sqrt{2)} }^{2}  }   \\   =   \frac{ {3}^{2} - 2 \times 3 \times 2 \sqrt{2} {(2   \sqrt{2})}^{2}  }{9 - 8}  \\  =  \frac{9 - 12 \sqrt{2}  + 8}{ 1}  \\  = 17 - 12 \sqrt{2}  \\ a \:  = 17 \\ b = 12

Hope this answer will help you!

⭐⭐⭐⭐

Plz mark as brainliest

⭐⭐⭐⭐

#Be Brainly✌️

⭐⭐⭐⭐

@Astudent

Answered by nitishsingh47
0

solution = 3-

3 -   2\sqrt{2}  \div 3 + 2 \sqrt{2}  = a + b \sqrt{2}

2 \sqrt{2}  - 2 \sqrt{2}

cut

3  \div 3 = a + b \sqrt{2}

b \sqrt{2}  = a - 1

b =  a - 1 \div  \sqrt{2}

Similar questions