if x + y + z =1,xy+yz+zx=2 and xyz=-2 find the value of x³+y³+z³ . please answer
Answers
Answered by
2
Step-by-step explanation:
We know that,
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - xz)
Or
x³ + y³ + z³ -3xyz = (x + y + z)[x² + y² + z² -( xy + yz + xz)]
We have everything except x² + y² + z² to find x³ + y³ + z³
So first we will find the value of x² + y² + z² In order to find x³ + y³ + z³
Given:
- x + y + z = 1
- xy + yz + xz = 2
- xyz = -2
We know that,
→ (x + y + z)² = x² + y² + z² + 2(xy + yz + xz)
Substituting the values, we get
→ (1)² = x² + y² + z² + 2(2)
→ 1 = x² + y² + z² + 4
→ x² + y² + z² = 1 - 4
→ x² + y² + z² = -3
Now,
x³ + y³ + z³ - 3xyz = (x + y + z)[x² + y² + z² - (xy + yz + xz)]
Substituting the values, we get
→ x³ + y³ + z³ - 3(-2) = (1)[-3- (2)]
→ x³ + y³ + z³ + 6 = -3 - 2
→ x³ + y³ + z³ + 6 = -5
→ x³ + y³ + z³ = -5 - 6
→ x³ + y³ + z³ = -11
Hence, x³ + y³ + z³ = -11
Similar questions