Math, asked by singhaakash7423, 10 months ago

3(3+X)+6(1+x)/2x=3/2​

Answers

Answered by Anonymous
13

Answer:

 \boxed{x =  \frac{ - 7 \pm  \sqrt{33} }{4}}

Step-by-step explanation:

Solve \:  for \:  x \:  over  \: the  \: real \:  numbers:  \\ 3(3 +  x) +  \frac{6(x + 1)}{2x}  =  \frac{3}{2}  \\  \\  \frac{6(x + 1)}{2x}  =  \frac{3(x + 1)}{x}:   \\  =  > 3(3 + x) +  \boxed{\frac{3(x + 1)}{x}} =  \frac{3}{2}  \\  \\ Bring \:  \:  3(3 + x) + \frac{3(x + 1)}{x} \:together   \\ using   \: the  \: common  \: denominator  \: x: \\  =  > (3(3 + x) \times  \frac{x}{x} ) +  \frac{3(x + 1)}{x}  =  \frac{3}{2} \\  =  >  \frac{9x + 3 {x}^{2} }{x}  +  \frac{3(x + 1)}{x}   =  \frac{3}{2}\\  =  >  \frac{9x + 3 {x}^{2} }{x}  +  \frac{3x + 3}{x}   =  \frac{3}{2}\\  =  >  \frac{(9x +3  {x}^{2} ) + (3x + 3)}{x}   =  \frac{3}{2}\\  =  >  \frac{3 {x}^{2} + 9x + 3x + 3 }{x}  =  \frac{3}{2} \\  =  >  \frac{3 {x}^{2} + 12 + 3 }{x}   =  \frac{3}{2}\\  =  >  \frac{3( {x}^{2} + 4x + 1 )}{x}  =  \frac{3}{2} \\

 \\ Cross \:  multiply: \\  =  > (3( {x}^{2}  + 4x + 1)) \times 2 = 3 \times x \\  =  > 6( {x}^{2}  + 4x + 1) = 3x \\  \\ Expand \:  out  \: terms  \: of \:  the  \: left  \: hand  \: side: \\  =  > 6 {x }^{2}  + 24x + 6 = 3x \\  \\ Subtract  \: 3 x  \: from  \: both \:  sides: \\  =  > 6 {x}^{2}  + 21x + 6 = 0 \\  \\ Divide  \: both \:  sides \:  by  \: 6: \\  =  >  {x}^{2}  +  \frac{7x}{2}  + 1 = 0 \\  \\ Subtract \:  1 \:  from \:  both  \: sides: \\  =  >  {x}^{2}  +  \frac{7x}{2}  =  - 1 \\  \\ Add  \:  \frac{49}{16} \:   to  \: both  \: sides: \\  =  >  {x}^{2}  +  \frac{7x}{2}  +  \frac{49}{16}  =  \frac{33}{16}  \\  \\ Write \:  the  \: left  \: hand  \: side  \: as  \: a  \: square: \\  =  > { (x +  \frac{7}{4} )}^{2}  =  \frac{33}{16}  \\  \\ Take \:  the  \: square  \: root \:  of  \: both \:  sides: \\  =  > x +  \frac{7}{4}  =  \pm \frac{ \sqrt{33} }{4}  \\  \\ Subtract  \:  \frac{7}{4} \:   from \:  both  \: sides: \\ =  >  x =  -  \frac{7}{4}  \pm \frac{ \sqrt{33} }{4}  \\  =  > x =  \frac{ - 7 \pm  \sqrt{33} }{4}

Similar questions