Math, asked by utkarsh6553, 1 month ago

3х + 4 = 12 ; y= 2х + 3
simultaneous equation​

Answers

Answered by Híɾo
297

Given :-

  • Two equations :- 3х + 4 = 12 and y = 2х + 3

To Find :-

  • The value of "x" and "y".

Solution :-

1st equation

 ~~~~~  \hookrightarrow {\sf {3x + 4 = 12}}

 ~~~~~  \hookrightarrow {\sf {3x = 12 - 4}}

 ~~~~~  \hookrightarrow {\sf {3x = 8}}

 ~~~~~  \hookrightarrow {\underline {\boxed {\sf {x = {\dfrac {8}{3}}}}}}

2nd equation

 ~~~~~  \hookrightarrow {\sf {y = 2x + 3}}

Now, substitute the value of "x" in 2nd equation.

 ~~~~~  \hookrightarrow {\sf {y = 2 \times {\dfrac {8}{3}} + 3}}

 ~~~~~  \hookrightarrow {\sf {y = {\dfrac {16}{3}} + 3}}

 ~~~~~  \hookrightarrow {\sf {y = {\dfrac {16 + 3 \times 3}{3}}}}

 ~~~~~  \hookrightarrow {\sf {y = {\dfrac {16 + 9}{3}}}}

 ~~~~~  \hookrightarrow {\underline {\boxed {\sf {y = {\dfrac {25}{3}}}}}}

Hence,

  •  {\sf {The~ value~ of~ "x" = {\dfrac {8}{3}}}}

  •  {\sf {The~ value~ of~ "y" = {\dfrac {25}{3}}}}

 ~~~~~  ~~~~~  ~~~~~ V E R I F I C A T I O N

To verify our answer, let's substitute the value of "x" in 1st equation.

 ~~~~~  \rightarrowtail {\sf {3x + 4 = 12}}

 ~~~~~  \rightarrowtail {\sf {{\cancel{3}} \times {\dfrac {8}{{\cancel{3}}}} + 4 = 12}}

 ~~~~~  \rightarrowtail {\sf {8 + 4 = 12}}

 ~~~~~  \rightarrowtail {\sf {12 = 12}}

 ~~~~~ L.H.S. = R.H.S.

Hence, verified!

Answered by sarojjainjhansi9725
0

Answer:

3x + 4 = 12

3x = 12 - 4

3x = 8

x = 8/3

now, put the value in eq. 2

2x + 3

2*8/3 + 3

16/3 + 3

now, take the L.C.M.

16 + 9/3

add 16 + 9 = 25/3

8.334 ANS...

Similar questions