Math, asked by rohit433, 1 year ago

3 - 4 sin squared theta by cos square theta

Attachments:

Answers

Answered by yrd
12
Find your answer in the attachment
Attachments:
Answered by mysticd
3

 \frac{3 - 4sin^{2} \theta }{cos^{2} \theta }

 Dividing\: numerator \:and \:denominator\\ by \: \blue { cos^{2} \theta} , we \:get

 = \frac{\frac{(3 - 4sin^{2} \theta)}{cos^{2} \theta }}{\frac{cos^{2} \theta }{cos^{2} \theta}}

 =  \frac{3}{cos^{2} \theta} - \frac{4sin^{2} \theta }{cos^{2} \theta } \\= 3sec^{2} \theta - 4tan^{2} \theta \\= 3(1+tan^{2} \theta ) - 4tan^{2} \theta \\= 3 + 3tan^{2} \theta - 4tan^{2} \theta \\= 3 - tan^{2} \theta

Therefore.,

 \red{\frac{3 - 4sin^{2} \theta }{cos^{2} \theta }}\\\green {= 3 - tan^{2} \theta}

•••♪

Similar questions