Math, asked by mayanklohia81, 1 month ago

3-√5/3+2√5=a√5-19/11 b​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question -}}

\rm :\longmapsto\:\dfrac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  =a \sqrt{5}  -  \dfrac{19}{11}b

find the values of a and b.

Concept Used :-

Method of Rationalization of denominator :-

  • Rationalization is the process of eliminating a radicals from the denominator. That is, to remove the radicals in a fraction so that the denominator must be a rational number.

  • We multiply and divide by the term with opposite sign in between binomial of the denominator.

\large\underline{\bf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  =a \sqrt{5}  -  \dfrac{19}{11}b

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} } \times \dfrac{3 - 2 \sqrt{5} }{3 - 2 \sqrt{5} }   =a \sqrt{5}  -  \dfrac{19}{11}b

\rm :\longmapsto\:\dfrac{9 -  6\sqrt{5}  - 3 \sqrt{5} + 10}{ {3}^{2} -   {(2 \sqrt{5})}^{2} }    =a \sqrt{5}  -  \dfrac{19}{11}b

 \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \red{ \bf \: \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

\rm :\longmapsto\:\dfrac{19 -  9\sqrt{5}}{9 - 20}    =a \sqrt{5}  -  \dfrac{19}{11}b

\rm :\longmapsto\:\dfrac{19 -  9\sqrt{5}}{ -11}    =a \sqrt{5}  -  \dfrac{19}{11}b

\rm :\longmapsto\: - \dfrac{19}{11} + \dfrac{9}{11} \sqrt{5} =a \sqrt{5}  -  \dfrac{19}{11}b

\rm :\longmapsto\:\dfrac{9}{11} \sqrt{5}- \dfrac{19}{11} \times 1 =a \sqrt{5}  -  \dfrac{19}{11}b

So,

On comparing, we get

\bf\implies \:a = \dfrac{9}{11}  \:  \:  \: and \:  \:  \: b = 1

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions