Math, asked by soni886, 1 month ago

3-√5/3+2√5=a+b√15
find a b​

Attachments:

Answers

Answered by purnachandratudu
0

Answer:

Answer: The required values of a and b are

a=-\dfrac{19}{7},~~b=\dfrac{5}{7}.a=−

7

19

, b=

7

5

.

Step-by-step explanation: We are given to find the values of a and b from the following :

\dfrac{\sqrt5+\sqrt3}{2\sqrt5-3\sqrt3}=a-b\sqrt{15}~~~~~~~~~~~~~~~~~~~~~~~~~(i)

2

5

−3

3

5

+

3

=a−b

15

(i)

To find the required values of a and b, we need to rationalize the denominator on the L.H.S. of (i).

From equation (i), we have

\begin{gathered}\dfrac{\sqrt5+\sqrt3}{2\sqrt5-3\sqrt3}=a-b\sqrt{15}\\\\\\\Rightarrow \dfrac{(\sqrt5+\sqrt3)(2\sqrt5+3\sqrt3)}{(2\sqrt5-3\sqrt3)(2\sqrt5+3\sqrt3)}=a-b\sqrt{15}\\\\\\\Rightarrow \dfrac{2\times5+3\sqrt{3\times5}+2\sqrt{3\times5}+3\times3}{(2\sqrt5)^2-(3\sqrt3)^2}=a-b\sqrt{15}\\\\\\\Rightarrow \dfrac{19+5\sqrt{15}}{20-27}=a-b\sqrt{15}\\\\\\\Rightarrow -\dfrac{19}{7}-\dfrac{5}{7}\sqrt{15}=a-b\sqrt{15}.\end{gathered}

2

5

−3

3

5

+

3

=a−b

15

(2

5

−3

3

)(2

5

+3

3

)

(

5

+

3

)(2

5

+3

3

)

=a−b

15

(2

5

)

2

−(3

3

)

2

2×5+3

3×5

+2

3×5

+3×3

=a−b

15

20−27

19+5

15

=a−b

15

⇒−

7

19

7

5

15

=a−b

15

.

Comparing the corresponding coefficients in the above equation, we get

a=-\dfrac{19}{7},~~b=\dfrac{5}{7}.a=−

7

19

, b=

7

5

.

Thus, the required values of a and b are

a=-\dfrac{19}{7},~~b=\dfrac{5}{7}.a=−

7

19

, b=

7

5

.

Similar questions