Math, asked by mantoodev4974, 3 months ago

3
5. If A lends 3500 to B at 10% per annum and B lends the same sum to Cat 11.5% per annum
then the gain of B in a period of 3 years is?​

Answers

Answered by Anonymous
48

Given:

  • If A lends 3500 to B at 10% per annum and B lends the same sum to C at 11.5% per annum

To Find:

  • the gain of B in a period of 3 years is?

Understanding the question:

Now, here A person ( B ) took loan from the person ( A) at the rate 10%P.A and lended the same amount to another person ( c ) at 11.5% P.A and, now we have said to find the profit ( gain ) earned by the person (B) so, now we have to calculate the amount which B has to give to the person A and then the amount B gets from ,then subtract them to find the profit earned

Solution:

We Know,

  \:  \: \:  \:  \:  \star{ \blue{ \boxed{ \tt{simple \: intrest =  \frac{p \times t \times r}{100} }}}}

 \\

Where,

 \\

  • ➪ P Stands for { \pink{ \bf{ principal}}}

  • ➪ T stands for { \gray{ \bf{time}}}

  •  R stands for { \orange{ \bf{rate}}}

 \\

Now, substituting the values for the loan taken from person A by B we get,

 \\

 \longrightarrow \tt \: s.i =  \frac{p \times t \times r}{100}  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longrightarrow \tt s.i =  \frac{35\cancel0\cancel0 \times 10 \times 3}{ 1\cancel0\cancel0}  \\  \\  \\\longrightarrow \tt s.i = 35 \times 10 \times 3 \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow{ \boxed{ \tt {s.i = r.s1050 }}} \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

We know,

 \:  \:  \:  \:  \:  \: { \star{ \pink{ \boxed{ \tt{amount = principal + intrest}}}}}

 \\

So ,

→ Amount = 3500 + 1050

→ Amount = 4550

 \\

Therefore,

 \:  \:  \:  \:  \:  \:  \:  \:  { \underline{ \rm{the \: amount \: to \: be \: paid\:  = rupees \: 4550}}}

 \\

Now,

  • Let's find the amount person( C ) gives to ( B )

 \\

Applying the formula

  \:  \: \:  \:  \:  \star{ \orange{ \boxed{ \tt{simple \: intrest =  \frac{p \times t \times r}{100} }}}}

We get,

\longrightarrow \tt s.i =  \frac{p \times t \times r}{100}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ \longrightarrow \tt s.i =  \frac{35{ \cancel{00}} \times 11.5 \times 3}{1 \cancel{00}}  \\  \\  \\ \longrightarrow \tt s.i = 35 \times 11.5 \times 3 \:  \:  \:  \:  \\  \\  \\ \longrightarrow { \boxed{\tt {s.i = rs.1207.5}}} \:  \:  \:  \:  \:  \:  \:

 \\

Now,

→Amount = 3500+1207.5

→Amount = 4707.5

 \\

Therefore,

 \:  \:  \:  \:  \:  \:  \:  \:  { \underline{ \rm{the \: amount \: to \:be \: paid \:  = rupees \: 4707.5}}}

 \\

Now,

\longrightarrow \sf \: profit \: earned =  4707.5 - 4550 \\  \\  \\ \longrightarrow \sf \: profit \: earned  =  \orange{157.5 \bigstar} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Hence:

  • B earned a profit of rupees 157.5

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

{ \boxed{ \bf{\overline{ \underline{ \mid{more \: to \: know \mid}}}}}}

\\

Additional information :

\begin{gathered}\small\boxed{\begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Principle :- \dfrac{SI \times 100}{R \times T}} \\ \\\bigstar \: \sf{Rate \: of \: Interest :- \dfrac{SI \times 100}{P \times T}} \\ \\ \bigstar \: \sf{Time :- \dfrac{SI \times 100}{P \times R}}\end{array}}\end{gathered}

Answered by Anonymous
28

Given:

  • If A lends 3500 to B at 10% per annum and B lends the same sum to Cat 11.5% per annum

To Find:

  • the gain of B in a period of 3 years is?

Solution:

We know,

  • Simple interest = PTR/100

◕Let's find the amount A has to pay B in return first!

→ Simple Interest = principal × time × rate /100

→ Simple interest = 3500 × 3 × 10 /100

→ Simple interest = rupees 1,050

Now,

→ Amount = principal + Simple Interest

→ Amount = 3500 + 1050

→ Amount = Rupees 4,550

  • Henceforth B has to pay Rupees 4,550 To A

◕ Now , let's find the Amount C has to pay to B

Using the same formula!

→ Simple interest = principal × rate × time /100

→ Simple Interest = 3500 × 11.5 × 3 / 100

→ Simple Interest = Rupees1,207.5

So,

→ Amount = 3500 + 1207.5

→Amount = Rupees 4707.5

Now,

→ Profit ( gain ) = 4707.5 - 4550

→ Profit ( gain ) = Rupees 175.5

Hence:

  • The profit earned = Rupees 175.5 Rupees
Similar questions