Math, asked by riya07062006, 1 year ago

(3/5)^x(5/3)^2x= (5/3)^3

Answers

Answered by AbhijithPrakash
8

Answer:

\left(\dfrac{3}{5}\right)^x\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^3\quad :\quad x=3

Step-by-step explanation:

\left(\dfrac{3}{5}\right)^x\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^3

\gray{\mathrm{Convert\:}\left(\dfrac{3}{5}\right)^x\mathrm{\:to\:base\:}\left(\dfrac{5}{3}\right)}

\gray{\left(\dfrac{3}{5}\right)^x=\left(\left(\dfrac{5}{3}\right)^{-1}\right)^x}

\left(\left(\dfrac{5}{3}\right)^{-1}\right)^x\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^3

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}}

\gray{\left(\left(\dfrac{5}{3}\right)^{-1}\right)^x=\left(\dfrac{5}{3}\right)^{-1x}}

\left(\dfrac{5}{3}\right)^{-1\cdot \:x}\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^3

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}}

\gray{\left(\dfrac{5}{3}\right)^{-1x}\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-1x+2x}}

\left(\dfrac{5}{3}\right)^{-1\cdot \:x+2x}=\left(\dfrac{5}{3}\right)^3

\gray{\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)}

-1\cdot \:x+2x=3

\gray{\mathrm{Simplify}}

x=3

Attachments:
Similar questions