Math, asked by nishasyadav15, 8 months ago

(3^-7÷3^-10)×3^-5 give answer fast​

Answers

Answered by Anonymous
13

ANSWER

\sf\therefore \bigg( \dfrac{3^{-7}}{3^{-10}} \times 3{-5} \bigg)

identity used,

\large{\boxed{\bf{ \star\:\: a^m \times a^n= a^{m+n} \:\: \star}}}

\sf\implies \bigg( \dfrac{3^{-7} 3^{-5}}{3^{-10}} \bigg)

\sf\implies \bigg( \dfrac{3^{[(-7)+(-5)]} }{3^{-10}} \bigg)

\sf\implies \bigg( \dfrac{3^{[-7-5]} }{3^{-10}} \bigg)

\sf\implies \bigg( \dfrac{3^{[-12]} }{3^{-10}} \bigg)

\sf\implies \left( \dfrac{ \dfrac{1}{531441}}{ \dfrac{1}{59049}} \right)

\sf\implies \left( \dfrac{1}{531441} \times 59049 \right)

\sf\implies \left( \dfrac{1}{\cancel{531441}} \times \cancel{59049} \right)

\sf\implies \dfrac{1}{9}

\large{\boxed{\bf{ \star\:\: \dfrac{1 }{9}\:\: \star}}}

___________________

Answered by Anonymous
95

Answer:

1/9

Step-by-step explanation:

am × an = am+n

=> (3^{-7}3^{-5}/3^{-10})

=> (3^{(-7)+(-5)}/3^{-10})

=> (3^{-12}/3^{-10})

=> (1/531441 / 1/59049)

=> (1/531441 * 59049)

=> 1/9

hope it helps ! ♥️

Similar questions