Math, asked by ambailey5, 11 months ago

3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x

Answers

Answered by suvarnamore28
1

Answer:

3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x 3(8x - 4) = 28x

Answered by atikshghuge
2

Answer: 8x4-28x3+20x2  

Final result :

 4x2 • (2x - 5) • (x - 1)

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 ((8•(x4))-(28•(x3)))+(22•5x2)

Step  2  :

Equation at the end of step  2  :

 ((8 • (x4)) -  (22•7x3)) +  (22•5x2)

Step  3  :

Equation at the end of step  3  :

 (23x4 -  (22•7x3)) +  (22•5x2)

Step  4  :

Step  5  :

Pulling out like terms :

5.1     Pull out like factors :

  8x4 - 28x3 + 20x2  =   4x2 • (2x2 - 7x + 5)  

Trying to factor by splitting the middle term

5.2     Factoring  2x2 - 7x + 5  

The first term is,  2x2  its coefficient is  2 .

The middle term is,  -7x  its coefficient is  -7 .

The last term, "the constant", is  +5  

Step-1 : Multiply the coefficient of the first term by the constant   2 • 5 = 10  

Step-2 : Find two factors of  10  whose sum equals the coefficient of the middle term, which is   -7 .

     -10    +    -1    =    -11  

     -5    +    -2    =    -7    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -5  and  -2  

                    2x2 - 5x - 2x - 5

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (2x-5)

             Add up the last 2 terms, pulling out common factors :

                    1 • (2x-5)

Step-5 : Add up the four terms of step 4 :

                   (x-1)  •  (2x-5)

            Which is the desired factorization

Final result :

 4x2 • (2x - 5) • (x - 1)

Step-by-step explanation:

Similar questions