Math, asked by DhruvArora, 1 year ago

√3 cos 13 + sin 13 = 2 sin 73 , please prove it

Answers

Answered by BEJOICE
56

 \sqrt{3}  \cos13 +  \sin13 \\  = 2( \frac{ \sqrt{3} }{2}  \cos13 + \frac{1}{2}   \sin13) \\  = 2( \sin60 \cos13 +  \cos60  \sin13) \\  = 2 \sin(60 + 13) = 2 \sin73
Answered by boffeemadrid
33

Answer:


Step-by-step explanation:

LHS: \sqrt{3}cos13+sin13

Multiplying and dividing by 2, we have

=2(\frac{\sqrt{3}}{2}cos13+\frac{1}{2}sin13)

Using sin60=\frac{\sqrt{3}}{2} and cos60=\frac{1}{2}, we get

=2(sin60cos13+cos60sin13)

Using, sin(A+B)=sinAcosB+cosAsinB, wehave

=2sin(60+13)

=2sin73

=RHS

Hence proved.

Similar questions