Math, asked by Merry4259, 11 months ago

3
∫ dx/x²(x+1) ,Evaluate it.
1

Answers

Answered by ranikumari4878
1

Answer:

The result is \dfrac{2}{3}+log(2)-log(3).

Step-by-step explanation:

Given:

\displaystyle\int_1^3\dfrac{dx}{x^2(x+1)}\\

Here we are applying formula of partial fraction:

\dfrac{1}{x^2(x+1)}=\dfrac{A}{x}+\dfrac{B}{x^2}+\dfrac{C}{x+1}\\\dfrac{1}{x^2(x+1)}=\dfrac{Ax(x+1)+B(x+1)+Cx^2}{x^2(x+1)}\\\dfrac{1}{x^2(x+1)}=\dfrac{Ax^2+Ax+Bx+B+Cx^2}{x^2(x+1)}\\1=Ax^2+Ax+Bx+B+Cx^2\\

Comparing the coefficients of x^2 in both side of the equation we get:

Ax^2+Cx^2=0\\A+C\,\,\,\,\,eqn(1)\\

Comparing the coefficient of x from both side of the equation we get:

Ax+Bx=0\\A+B=0\,\,\,\,\,eqn(2)\\

And by comparing the constant terms we get:

B=1

Hence substituting the value of B in eqn(2) we get:

A=-1

And again substituting the value of A in eqn(1) we get:

C=1

Now integrating by substituting the above values:

\displaystyle\int_1^3 \dfrac{1}{x^2(x+1)}=\displaystyle\int_1^3 \dfrac{-1}{x}dx+\displaystyle\int_1^3 \dfrac{1}{x^2}dx+\displaystyle\int_1^3 \dfrac{dx}{x+1}\\

Let:

x+1=z

Differentiating with respect to x.

dx=dz\\

Now substituting for the value of limits:

Lower limit:

When x=1

z=1+1\\z=2

Upper limit:

When x=3

z=3+1\\z=4

Therefore evaluating it:

=\displaystyle\int_1^3 \dfrac{-1}{x}dx+\displaystyle\int_1^3 \dfrac{1}{x^2}dx+\displaystyle\int_2^4\dfrac{dz}{z}\\=-[log(x)]_1^3+(\dfrac{-1}{x})_1^3+[log(z)]_2^4\\=-[log(3)-log(1)]-(\dfrac{1}{3}-1)+[log(4)-log(2)]\\=-[log(3)-0]-(\dfrac{-2}{3})+[2log(2)-log(2)]\\=\dfrac{2}{3}-log(3)+log(2)

Similar questions