Math, asked by Masterdevil8112, 11 months ago

π/2prove that: ∫ log cosx dx= - π/2 log 2 0

Answers

Answered by rishu6845
0

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by bestwriters
4

Given:

\int_{0}^{\frac{\pi}{2}} \log \cos (x) d x=-\frac{\pi}{2} \log 2

Step-by-step explanation:

Let us consider the L.H.S as ‘I’.

I=\int_{0}^{\frac{\pi}{2}} \log \cos (x) d x

In this problem, we need to follow the below identities for simplified calculation.

\int_{0}^{\frac{\pi}{2}} \log \cos x d x=\int_{0}^{\frac{\pi}{2}} \log \sin x d x

\int_{0}^{\pi} \log \sin x d x=2 \int_{0}^{\frac{\pi}{2}} \log \sin x d x

Now, the integral becomes,

2 I=\int_{0}^{\frac{\pi}{2}} \log \cos x d x+\int_{0}^{\frac{\pi}{2}} \log \sin x d x

I=\int_{0}^{\frac{\pi}{2}} (\log \cos x+\log \sin x) d x

\bold{[\because \log a b=\log a+\log b]}

I=\int_{0}^{\pi / 2} \log (\sin x \cdot \cos x) d x

\bold{[\because \cos (x) \sin (x)=\frac{\sin (2 x)}{2}]}

I=\int_{0}^{\frac{\pi}{2}} \log \frac{\sin 2 x}{2} d x

\bold{\left[\because \log \frac{a}{b}=\log a-\log b\right]}

I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x-\log 2 d x

I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x

I=\int_{0}^{\frac{\pi}{2}} (\log \sin 2 x) d x-\frac{\pi \log 2}{2}

Let u = 2x;

\frac{du}{dx}=2 \Rightarrow d x=\frac{d u}{2}

If x=0 \Rightarrow u=0

If x=\frac{\pi}{2} \Rightarrow u=\pi

Now,

2 I=\int_{0}^{\pi} \frac{1}{2} \log \sin u d u-\frac{\pi \log 2}{2}

2 I=\frac{1}{2} \int_{0}^{\pi} \log \sin u d u-\frac{\pi \log 2}{2}

\bold{[\because 2 I=2 \int_{0}^{\frac{\pi}{2}} \ln \sin x d x=\int_{0}^{\pi} \ln \sin x d x=\int_{0}^{\pi} \ln \sin u d u]}

2 I=\frac{1}{2} 2 I-\frac{\pi \log 2}{2}

2 I=I-\frac{\pi \log 2}{2}

I=\left[-\frac{\pi \log 2}{2}\right]

Hence proved.

Similar questions