Math, asked by jedidiahsamuel, 2 months ago

3. Evaluate S' [2 – [x]] dx limits from -1 to 1 integrate

Answers

Answered by mathdude500
2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \:  Let \: f(x) \:  = [2 - [x]] \: where \:  - 1 \leqslant x \leqslant 1

\tt \:  \begin{gathered}\begin{gathered}\tt \: So,  \: f(x) \:  = \begin{cases} &\sf{[2 - ( - 1)]} \: when \:  - 1 \leqslant x \ <  0 \\ &\sf{[2 - 0]}  \: when \: 0 \leqslant x \leqslant 1\end{cases}\end{gathered}\end{gathered}

\tt \:  \begin{gathered}\begin{gathered}\tt \: So,  \: f(x) \:  = \begin{cases} &\sf{[3]} \: when \:  - 1  \leqslant  x  <  0 \\ &\sf{[2]}  \: when \: 0 \leqslant x \leqslant 1\end{cases}\end{gathered}\end{gathered}

\tt \:  \begin{gathered}\begin{gathered}\tt \: So,  \: f(x) \:  = \begin{cases} &\sf{3} \: when \:  - 1 \leqslant x \ <  0 \\ &\sf{2}  \: when \: 0 \leqslant x \leqslant 1\end{cases}\end{gathered}\end{gathered}

\tt \:  Consider \: \int_{ - 1}^1[2 - [x]]dx

\tt \:  = \: \int_{ - 1}^0[2 - [x]]dx + \int_{ 0}^1[2 - [x]]dx

\tt \:   =  \: \int_{ - 1}^03 \: dx \:  + \int_{ 0}^1 \: 2 \: dx

\tt \:   = [3x]_{ - 1}^0 \:  +  \: [2x]_0^1

\tt \:   = ( 0 - (- 3)) + (2 - 0)

\tt \:   =  \:    \: 5

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions