3. Express the following as a product of prime factors
in exponential form. a. 108 x 64 b. 288 x 324
Answers
Answered by
2
Answer:
Resolving 108 and 192 into product of prime factors,we get
2| 108
______
2| 54
______
3| 27
______
3| 9
______
** 3
108 = 2² × 3³
2| 192
______
2| 96
______
2| 48
______
2| 24
______
2| 12
______
2| 6
______
*** 3
192 = 2^{6}\times 3^{1}192=2
6
×3
1
\begin{gathered}Now, \\Product \: of \: 108 \times 192 \\= 2^{2}\times 3^{3}\times 2^{6}\times 3^{1}\\=2^{2+6}\times 3^{3+1}\end{gathered}
Now,
Productof108×192
=2
2
×3
3
×2
6
×3
1
=2
2+6
×3
3+1
\begin{gathered}By\: Exponential\: Law :\\\boxed {a^{m}\times a^{n} = a^{m+n}}\end{gathered}
ByExponentialLaw:
a
m
×a
n
=a
m+n
= 2^{8}\times 3^{4}=2
8
×3
4
Therefore,
Product \: of \: 108 \times 192 =2^{8}\times 3^{4}Productof108×192=2
8
×3
4
•••♪
Answered by
2
I DID NOT UNDERSTAND YOUR QUESTION!
Similar questions