Math, asked by kavinya, 9 months ago

3.
Find the values of m and n if the following polynomials are perfect square
(i) 36x^4 - 60x^3+ 61x^2- mx +n​

Answers

Answered by MaheswariS
8

\underline{\textsf{Given:}}

\mathsf{36x^4-60x^3+61x^2-mx+n}\,\textsf{is a perfect square}

\underline{\textsf{To find:}}

\textsf{The value of m and n}

\underline{\textsf{Solution:}}

\textsf{We apply long division square root method}

\begin{array}{r|l}&6x^2-5x+3\\\cline{2-2}&\\6x^2&36x^4-60x^3+61x^2-mx+n\\&\\&36x^4\\&\\\cline{2-2}&\\12x^2-5x&****-60x^3+61x^2\\&\\&****-60x^3+25x^2\\&\\\cline{2-2}&\\12x^2-10x+3&**********36x^2-mx+n\\&\\&**********36x^2-30x+n\\&\\\cline{2-2}&****************0****\\\cline{2-2}\end{array}

\textsf{Since the given polynomial is a perfect square, we have}

\textsf{m=30 and n=3}

\underline{\textsf{Answer:}}

\textsf{The value of m and n are 30 and 3}

Find more:

The value of n for which the expression x^4+4x^3+nx^2+4x+1 becomes a perfect square

https://brainly.in/question/1714008

X^4+px^3+rx+s^2 is a perfect square then find p^3+8r

Pls solve ​

https://brainly.in/question/17304586

If 81x⁴-72x³+px²-8x+1 is a perfect square the find the value of p

https://brainly.in/question/18376844

Answered by pulakmath007
30

SOLUTION :

TO DETERMINE

The value of m and n such that the below polynomial is perfect square

 \sf{}36 {x}^{4}  - 60 {x}^{3}  + 61 {x}^{2}  - mx + n

EVALUATION

 \sf{}36 {x}^{4}  - 60 {x}^{3}  + 61 {x}^{2}  - mx + n

 \sf{} =  {(6 {x}^{2}) }^{2}  - 2.6 {x}^{2} .5x +  {(5x) }^{2}  + 36 {x}^{2}  - mx + n

 \sf{} =  {(6 {x}^{2} - 5x) }^{2}   + 36 {x}^{2}  - mx + n

 \sf{} =  {(6 {x}^{2} - 5x) }^{2}  + 2.3.(6 {x}^{2}  - 5x) + 30x- mx + n

 \sf{} =  {(6 {x}^{2} - 5x) }^{2}  + 2.3.(6 {x}^{2}  - 5x) +  {3}^{2}  + (30- m)x + (n - 9)

 \sf{} =  {(6 {x}^{2} - 5x + 3) }^{2}   + (30- m)x + (n - 9)

Therefore the last obtained polynomial will be a perfect square if

 \sf{}30 - m \:  = 0 \:  \:  \: and \:  \: n - 9 = 0

Now

 \sf{}30 - m \:  = 0 \:  \:  \:gives \:  \: m = 30

 \sf{}n - 9 = 0 \:  \:  \: gives \:  \: n = 9

FINAL RESULT

The required value of m and n are 30 and 9 respectively such that the below polynomial is perfect square

 \sf{}36 {x}^{4}  - 60 {x}^{3}  + 61 {x}^{2}  - mx + n

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Write the degree of the given polynomial:

5x³+4x²+7x

https://brainly.in/question/5714606

Similar questions