Math, asked by athisri2289, 19 days ago

3. Find the volume of the hemisphere whose total surface area is 2772 m^2​

Answers

Answered by bhosaleanita321
1

Answer:

The volume of the hemisphere is 19404 cm3.

Answered by Anonymous
7

Answer:

The volume of hemisphere is 15853.2 m³.

Step-by-step explanation:

Firstly, finding the radius of hemisphere by substituting the values in the formula :

 \quad{\longrightarrow{\pmb{\sf{Tsa = 3\pi{r}^{2}}}}}

  • Tsa = Total surface area
  • π = 22/7
  • r = radius

 \quad{\longrightarrow{\sf{Tsa = 3\pi{r}^{2}}}}

 \quad{\longrightarrow{\sf{2772 = 3 \times  \dfrac{22}{7} \times {r}^{2}}}}

 \quad{\longrightarrow{\sf{2772 =\dfrac{3 \times 22}{7} \times {r}^{2}}}}

 \quad{\longrightarrow{\sf{2772 =\dfrac{66}{7} \times {r}^{2}}}}

 \quad{\longrightarrow{\sf{{r}^{2} = 2772 \times  \dfrac{7}{66} }}}

 \quad{\longrightarrow{\sf{{r}^{2} =  \cancel{2772}\times  \dfrac{7}{\cancel{66}}}}}

 \quad{\longrightarrow{\sf{{r}^{2} = 42 \times 7}}}

 \quad{\longrightarrow{\sf{{r}^{2} = 294}}}

 \quad{\longrightarrow{\sf{r = \sqrt{294}}}}

\quad{\longrightarrow{\sf{\underline{\underline{\red{r \approx  17.15 \: m}}}}}}

Hence, the radius of hemisphere is 17.15 m.

———————————————————————

Now, finding the volume of hemisphere by substituting the values in the formula :

\quad\implies{\pmb{\sf{V =  \dfrac{2}{3} \pi {r}^{3}}}}

  • V = Volume
  • π = 22/7
  • r = radius

\quad\implies{\sf{V =  \dfrac{2}{3} \pi {r}^{3}}}

\quad{\implies{\sf{V =  \dfrac{2}{3} \times  \dfrac{22}{7} \times {(17.15)}^{3}}}}

\quad{\implies{\sf{V \approx \dfrac{2}{3} \times  \dfrac{22}{7} \times (5044.20)}}}

\quad{\implies{\sf{V \approx \dfrac{2}{3} \times  \dfrac{22}{7}  \times 5044.20}}}

\quad{\implies{\sf{V \approx\dfrac{2 \times 22}{3 \times 7}  \times 5044.20}}}

\quad{\implies{\sf{V \approx\dfrac{66}{21}  \times 5044.20}}}

\quad{\implies{\sf{V \approx\dfrac{66}{\cancel{21}}  \times  \cancel{5044.20}}}}

\quad{\implies{\sf{V \approx 66 \times 240.2}}}

\quad{\implies{\sf{\underline{\underline\pink{V \:  \approx \:  15853.2 \:  {m}^{3}}}}}}

Hence, the volume of hemisphere is 15853.2 m³.

\rule{300}{2.5}

Similar questions