Math, asked by rudranshdwivedi17, 1 month ago

3. From the given figure, write down the values of:
(i) Sin B
(ii) tan B
(iii) Cos C
(iv) Cot C
(v) (Sin B Cos C + Cos B Sin C)
(vi) (Sec² C – tan² C)​

Attachments:

Answers

Answered by VεnusVεronίcα
10

In a right angled triangle ∆ABC :

  • AC : Perpendicular : ?
  • AB : Base : 15 units
  • BC : Hypotenuse : 17 units

From Pythagoras theorem, we get :

:\implies~~{\bf{\purple{(AC)^2+(AB)^2=(BC)^2}}}

\sf:\implies~~ (AC)^2+(15)^2=(17)^2

\sf:\implies~~ (AC)^2+225=289

\sf :\implies~~ (AC)^2=289-225

\sf:\implies~~ (AC)^2=64

\sf:\implies~~ AC=\sqrt{64}

\purple{:\implies~~\bf{ AC=8~units}}

 \\

~~~~~~~~_____________

 \\

{ \bf{ \purple{(~I~)~Sin B : }}}

We know that :

\sf :\implies~~ SinB=\dfrac{Opposite}{Hypotenuse}

\sf :\implies~~SinB =\dfrac{AC}{BC}

\purple{:\implies~~ \bf SinB =\dfrac{8}{17}}

 \:  \\

~~~~~~~~_____________

 \\

\purple{\bf{(~II~)~TanB:}}

We know that :

\sf :\implies~~ TanB=\dfrac{Opposite}{Adjacent}

\sf :\implies~~ TanB=\dfrac{AC}{AB}

\purple{:\implies~~ \bf{TanB=\dfrac{8}{15}}}

 \\

~~~~~~~~_____________

 \\

{\bf{\purple{(~III~)~CosC:}}}

We know that :

\sf :\implies~~ CosC=\dfrac{Adjacent}{Hypotenuse}

\sf:\implies~~ CosC=\dfrac{AC}{BC}

\purple{:\implies~~ {\bf{CosC=\dfrac{8}{17}}}}

 \\

~~~~~~~~_____________

 \\

{\bf{\purple{(~IV~)~CotC}}}

We know that :

\sf:\implies~~ CotC=\dfrac{Adjacent}{Opposite}

\sf:\implies~~ CotC=\dfrac{AC}{AB}

\purple{:\implies~~{\bf{CotC=\dfrac{8}{15}}}}

 \\

~~~~~~~~_____________

 \\

{\bf{\purple{(~V~)~SinB~CosC+CosB~SinC}}}

We already know the value of SinB and CosC. Now let's find the value of :

  • CosB
  • SinC

We know :

\sf:\implies~~ CosB=\dfrac{Adjacent}{Hypotenuse}

\sf:\implies~~ CosB=\dfrac{AB}{BC}

\purple{:\implies~~{\bf{CosB=\dfrac{15}{17}}}}

Also :

\sf :\implies~~ SinC=\dfrac{Opposite}{Hypotenuse}

\sf:\implies~~ SinC=\dfrac{AB}{BC}

\purple{:\implies~~{\bf{ SinC=\dfrac{15}{17}}}}

Finally, substituting :

 \sf :  \implies \:  \: SinB~CosC+CosB~SinC=\bigg(  \dfrac{8}{17}  \times  \dfrac{8}{17}  \bigg) +  \bigg( \dfrac{15}{17}  +  \dfrac{15}{17} \bigg )

 \sf :  \implies \:  \:  SinB~CosC+CosB~SinC=\dfrac{64}{289}  +  \dfrac{225}{289}

 \sf :  \implies \:  \:SinB~CosC+SinC~CosB = \dfrac{64 + 225}{289}

 \sf :  \implies \:  \: SinB~CosC+SinC~CosB= \dfrac{289}{289}

\purple{:\implies~~{\bf{SinB~CosC+CosB~SinC=1}}}

 \ \\

~~~~~~~~_____________

 \\

{\bf{\purple{Sec^2C-Tan^2C}}}

Firstly, let's find the value of SecC :

\sf:\implies~~SecC=\dfrac{Hypotenuse}{Adjacent}

\sf:\implies~~ SecC=\dfrac{BC}{AC}

\purple{:\implies~~{\bf{SecC=\dfrac{17}{8}}}}

Now, let's find TanC :

\sf:\implies~~ TanC=\dfrac{Opposite}{Adjacent}

\sf:\implies~~ TanC=\dfrac{AB}{AC}

\purple{:\implies~~{\bf{TanC=\dfrac{15}{8}}}}

Now, substituting :

\sf :\implies~~ Sec^2-Tan^2C=\bigg(\dfrac{17}{8}\bigg)^2-\bigg(\dfrac{15}{8}\bigg)^2

 \sf :  \implies \:  \:  Sec^2C-Tan^2C=\cfrac{289}{64}  -  \cfrac{225}{64}

 \sf :  \implies \:  \: Sec^2C-Tan^2C= \dfrac{289 - 225}{64}

 \sf :  \implies \:  \:  Sec^2-Tan^2C=\cfrac{64}{64}

\purple{:\implies~~{\bf{Sec^2C-Tan^2C=1}}}

Similar questions