Math, asked by alfiya465, 3 months ago

3. If-1 <m <3 then prove that the roots of x^2 - 2mx + m^2 - 1 = 0 lies in (-2, 4)​

Answers

Answered by amansharma264
21

EXPLANATION.

If -1 < m < 3

Prove the roots of equation x² - 2mx + m² - 1 lies in ( -2 , 4).

Range of the equation = ( -2 , 4 ).

Conditions ⇒ a > o satisfy the equation.

(1) = D ≥ 0.

D = b² - 4ac ≥ 0.

⇒ (-2m)² - 4(1)(m² - 1 ) ≥ 0.

⇒ 4m² - 4m² + 4 ≥ 0.

this conditions also satisfy the equation.

⇒ (2) = k₁ < -b/2a < k₂.

⇒ k₁ = -2  and k₂ = 4.

⇒ -2 < -(-2m)/2 < 4.

⇒ -2 < m < 4.    .....(1)

This condition also satisfy the equation.

(3) = f(k₁) > 0.

⇒ f(-2) = 0.

put the value of f(-2) in equation we get,

⇒ (-2)² - 2m(-2) + m² - 1 > 0.

⇒ 4 + 4m + m² - 1 > 0.

⇒ m² + 4m + 3 > 0.

⇒ m² + 3m + m + 3 > 0.

⇒ m ( m + 3 ) + 1 ( m + 3 ) > 0.

⇒ ( m + 1 ) ( m + 3 ) > 0.

⇒ m = -1 and -3

put the value it on wavy curve method we get,

m ∈ ( -∞ , -3 ) ∪ ( -1 ,∞ )  .....(2).

(4) = f(k₂) > 0.

⇒ f(4) > 0.

put the value of f(4) in equation we get,

⇒ (4)² - 2m(4) + m² - 1 > 0.

⇒ 16 - 8m + m² - 1 > 0.

⇒ m² - 8m + 15 > 0.

⇒ m² - 5m - 3m + 15 > 0.

⇒ m ( m - 5 ) -3 ( m - 5 ) > 0.

⇒ ( m - 3 ) ( m - 5 ) > 0.

⇒ m = 3 and m = 5.

put the value of m in wavy curve method we get,

m ∈ ( -∞ , 3 ) ∪ ( 5 , ∞ )   .......(3).

From equation (1) , (2) and (3) we can take intersection of the equation.

intersection of equation = (1) ∩ (2) ∩ (3).

we get,

⇒ -1 < m < 3.

HENCE PROVED.

Attachments:
Similar questions