Math, asked by kvrconscy, 2 months ago



3.If 17 sin 0 = 8, then find the value of tan teta by 1+tan² teta​

Answers

Answered by varadad25
7

Question:

If \displaystyle{\sf\:17\:\sin\:\theta\:=\:8}, then find the value of \displaystyle{\sf\:\dfrac{\tan\:\theta}{1\:+\:\tan^2\:\theta}}

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{\tan\:\theta}{1\:+\:\tan^2\:\theta}\:=\:\dfrac{120}{289}}}}

Step-by-step-explanation:

We have given that, \displaystyle{\sf\:17\:\sin\:\theta\:=\:8}

We have to find the value of \displaystyle{\sf\:\dfrac{\tan\:\theta}{1\:+\:\tan^2\:\theta}}

Now,

\displaystyle{\sf\:17\:\sin\:\theta\:=\:8}

\displaystyle{\implies\sf\:\sin\:\theta\:=\:\dfrac{8}{17}}

Now, we know that,

\displaystyle{\pink{\sf\:\sin^2\:\theta\:+\:\cos^2\:\theta\:=\:1}\sf\:\:\:-\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:1\:-\:\sin^2\:\theta}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\sin^2\:\theta}\:\:\:-\:-\:-\:[\:Taking\:square\:roots\:]}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\left(\:\dfrac{8}{17}\:\right)^2}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\dfrac{8^2}{(\:17\:)^2}}\:\:\:\:-\:-\:-\:\left[\:\because\:\left(\:\dfrac{a}{b}\:\right)^m\:=\:\dfrac{a^m}{b^m}\:\right]}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\dfrac{64}{289}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{\dfrac{289\:-\:64}{289}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{\dfrac{225}{289}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{\dfrac{15\:\times\:15}{17\:\times\:17}}}

\displaystyle{\implies\boxed{\red{\sf\:\cos\:\theta\:=\:\dfrac{15}{17}}}}

Now, we know that,

\displaystyle{\pink{\sf\:\tan\:\theta\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}}\sf\:\:\:-\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:\tan\:\theta\:=\:\dfrac{\dfrac{8}{17}}{\dfrac{15}{17}}}

\displaystyle{\implies\sf\:\tan\:\theta\:=\:\dfrac{8}{\cancel{17}}\:\times\:\dfrac{\cancel{17}}{15}}

\displaystyle{\implies\boxed{\red{\sf\:\tan\:\theta\:=\:\dfrac{8}{15}}}}

Now, we have to find the value of

\displaystyle{\sf\:\dfrac{\tan\:\theta}{1\:+\:\tan^2\:\theta}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{8}{15}}{1\:+\:\left(\:\dfrac{8}{15}\:\right)^2}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{8}{15}}{1\:+\:\dfrac{64}{225}}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{8}{15}}{\dfrac{225\:+\:64}{225}}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{8}{15}}{\dfrac{289}{225}}}

\displaystyle{\implies\sf\:\dfrac{8}{\cancel{15}}\:\times\:\dfrac{\cancel{225}}{289}}

\displaystyle{\implies\sf\:\dfrac{8\:\times\:15}{289}}

\displaystyle{\implies\sf\:\dfrac{120}{289}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{\tan\:\theta}{1\:+\:\tan^2\:\theta}\:=\:\dfrac{120}{289}}}}}


amansharma264: Excellent
Similar questions