Math, asked by mohammednafreenbegum, 4 months ago

3) If (3,-3) (3, -1) (1,1) are the mid points
of the sides BC, CA and AB of the triangle then
ABC are
a) A (1,3) B (+ 1-1) c(5,-5) b)A(1,-3) B (1,-1) C(5,5)
C) A (1,3) B(1,-1) C(5,5)
dJ AC1,3 18C1,1)C(5,5)​

Answers

Answered by Ataraxia
18

Solution :-

Figure :-

   \setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A\ (x_1,y_1)$}\put(0.5,-0.3){$\bf B$}\put(5.2,-0.3){$\bf C$}\put(1.93,1.45){$\large\bullet$}\put(3.9,1.45){$\large\bullet$}\put(2.9,-0.1){$\large\bullet$}\put(0,-0.8){$\bf (x_2,y_2)$}\put(4.8,-0.8){$\bf (x_3,y_3)$}\put(0.4,1.5){$\bf(1,1) $}\put(2.4,-0.6){$\bf(3,-3)$}\put(4.3,1.5){$\bf(3,-1)$}\end{picture}

Midpoint of AC = ( 3 , -1 )

\longrightarrow \sf \left( \dfrac{x_1+x_3}{2} \ , \  \dfrac{y_1+y_3}{2} \right) = ( 3   , -1 )

\bullet \sf \ \dfrac{x_1+x_3}{2}  = 3

\longrightarrow \sf x_1+x_3 = 6  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ........................(1)

\bullet \sf \ \dfrac{y_1+y_3}{2} = -1

\longrightarrow \sf y_1+y_3 = -2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ........................(2)

Midpoint of AB = ( 1 , 1 )

\longrightarrow \sf \left( \dfrac{x_1+x_2}{2} \ ,  \ \dfrac{y_1+y_2}{2} \right)= (1,1)

\bullet \sf \ \dfrac{x_1+x_2}{2} = 1

\longrightarrow \sf x_1+x_2 = 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ........................(3)

\bullet \sf \ \dfrac{y_1+y_2}{2} =1

\longrightarrow \sf y_1+y_2 = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ........................(4)

Midpoint of BC = ( 3 , -3 )

\longrightarrow \sf \left( \dfrac{x_2+x_3}{2}  \ ,  \  \dfrac{y_2+y_3}{2} \right)= (3 , -3 )

\bullet \sf \ \dfrac{x_2+x_3}{2}= 3

\longrightarrow \sf x_2+x_3 = 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ........................(5)

\bullet \sf \ \dfrac{y_2+y_3}{2} =-3

\longrightarrow \sf y_2+y_3 =-6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ........................(6)

Adding eq(1), eq(3) and eq(5) :-

\longrightarrow \sf 2(x_1+x_2+x_3) =2+6+6 \\\\\longrightarrow 2(x_1+x_2+x_3) = 14 \\\\\longrightarrow x_1+x_2+x_3 = 7

Substitute \sf x_2+x_3=6,

\longrightarrow \sf x_1+6 = 7

\longrightarrow\underline{\boxed{\bf x_1 = 1}}

Substitute \sf x_1 = 1 in eq(1) :-

\longrightarrow \sf 1+x_3 = 6

\longrightarrow \underline{\boxed{\bf x_3 = 5}}

Substitute \sf x_3 = 5 in eq(5) :-

\longrightarrow \sf x_2+5=6

\longrightarrow \sf \underline{\boxed{\bf x_2=1}}

Adding eq(2), eq(4) and eq(6) :-

\longrightarrow \sf 2(y_1+y_2+y_3) = -2+2-6 \\\\\longrightarrow 2(y_1+y_2+y_3) = -6 \\\\\longrightarrow y_1+y_2+y_3 = -3

Substitute \sf y_2+y_3 = -6,

\longrightarrow \sf y_1-6 = -3

\longrightarrow\underline{\boxed{\bf y_1 =3}}

Substitute \sf y_1 =3 in eq(2) :-

\longrightarrow \sf 3+y_3 = -2 \\\\\longrightarrow \underline{\boxed{\bf y_3=-5}}

Substitute \sf y_3 = -5 in eq(6) :-

\longrightarrow \sf y_2-5 = -6

\longrightarrow \underline{\boxed{\bf y_2 = -1}}

  • Coordinates of A = ( 1 , 3 )
  • Coordinates of B = ( 1 , -1 )
  • Coordinates of C = ( 5 , -5 )

Hence option A is correct.

Similar questions