3. If α , β are the roots of the equation 3x2 + 7 x − 2 = 0 , find the values of (i) (α/β) + (β/α) (ii) (α2/β) + (β2/α)
Answers
Solution
Given :-
- α & β are roots of equation 3x² + 7x - 2 = 0 ________(1)
Find :-
- Value of (α/β) + (β/α)
- Value of (α2/β) + (β2/α)
Explanation
Some Formula
★ Sum of roots = -(Coefficient of x)/(Coefficient of x²)
★ Product of roots = (Constant part)/(Coefficient of x²)
So, Now
➡ Sum of roots = -7/3
➡ α + β = -7/3__________(2)
Again,
➡ Product of roots = -2/3
➡α . β = -2/3____________(3)
Now, Squaring both side of equ(2)
➡ (α + β)² = (-7/3)²
➡α² + β² + 2α.β = 49/9
Keep Value by equ(3)
➡α² + β² = 49/9 - 2 × (-2/3)
➡α² + β² = 49/9 + 4/3
➡α² + β² = (49 + 12)/9
➡α² + β² = 61/9___________(4)
Now, First Calculate
➡ (α/β) + (β/α)
➡ (α² + β²)/αβ
Keep value by equ(3) &(4)
➡ (61/9)/(-2/3)
➡61/9 × -3/2
➡ -61/6. ( Ans.)
________________________
Now, Calculate Second.
➡(α²/β) + (β²/α)
➡(α³ + β³)/β . α
[ (α³ + β³) = (α+ β)(α²+ β² - β . α)
➡[(α+ β)(α²+ β² - β . α)]/β . α
Keep values by equ(2) , (3) &(4)
➡[(-7/3){61/9 - (-2/3)}]/(-2/3)
➡(-7/3) × (61+6)/9 × -3/2
➡7 × 67/18
➡469/18. [ Ans.]
_______________________