Math, asked by simratkaur1757, 9 months ago

3. If (p+iq) ^2 = x+iy then prove that (p^2+q^2)^2= x + y?​

Answers

Answered by mysticd
18

 Given \: \blue{(p+iq)^{2} = x + iy }

 \implies p^{2} + (iq)^{2} + 2 \times p \times iq = x + iy

 \implies p^{2} - q^{2} + 2 i pq = x + iy

 \boxed{ \pink{ \because i^{2} = -1 }}

 Compare \: both \:sides, we \:get

 p^{2} - q^{2} = x \: --(1)

 2pq = y \: --(2)

 LHS = \red{ (p^{2} + q^{2})^{2} }

 = (p^{2} - q^{2})^{2} + 4p^{2}q^{2}

 = (p^{2} - q^{2})^{2} + (2pq)^{2}

 \green {= x^{2} + y^{2}} \: \blue{ [ From \: (1) \:and \:(2) ]}

 \neq RHS

Therefore.,

 \red{ (p^{2} + q^{2})^{2} }\green { = x^{2} + y^{2}}

•••♪

Similar questions