Math, asked by marsaudayan, 2 months ago

3. If roots of one quadratic equation are
(4√2 + 3) and (4√2 - 3) then find the
quadratic equation.​

Answers

Answered by hemeemagunthoti
1

Answer:

x^2+8root2x-23=0

Step-by-step explanation:

consider alpha=4root2+3 and beta=4root2 -3

use the formula x^2+(alpha+beta)x-alpha ×beta =0

Answered by Anonymous
111

Given:-

  • Roots of Quadratic equation are   (4√2 + 3) and (4√2 - 3)

To find:-

The required Quadratic equation       

Solution :-

The required Quadratic equation whose roots are \alpha, \beta are

x^2-(\alpha+\beta)x+\alpha\beta

Here,

\alpha = 4\sqrt{2} +3

\beta = 4\sqrt{2} -3

\maltese \: \alpha+\beta = (4\sqrt{2}+3)+(4\sqrt{2}-3)

\alpha +\beta = 4\sqrt{2} +3+4\sqrt{2} -3

\alpha +\beta = 4\sqrt{2} +\not3+4\sqrt{2} \not{-3}

\alpha +\beta = 4\sqrt{2} +4\sqrt{2}

\red{\boxed{\alpha+\beta = 8\sqrt{2}}}

\maltese\: \alpha\beta =(4\sqrt{2} +3)(4\sqrt{2}-3)

\alpha\beta = (4\sqrt{2})^2 - (3)^2

\alpha\beta = 32-9

\alpha\beta = 23

\red{\boxed{\alpha\beta=23}}

Substituting the value in  formula

x^2-(\alpha+\beta)x+\alpha\beta

x^2- (8\sqrt{2} )x+23

\red{x^2-8\sqrt{2} x+23}

So, the required Quadratic equation is \red{\boxed{x^2-8\sqrt{2} x+23}}

Verification :-

Hence we got the quadratic equation their roots must be(4√2 + 3) and (4√2 - 3)   x^2-8\sqrt{2} x+23

Finding the roots by the quadratic formula

a = 1\\b= -8\sqrt{2} \\c=23                            

Quadratic equation :-\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}

x = \dfrac{-(-8\sqrt{2})\pm\sqrt{(-8\sqrt{2} )^2-4(1)(23)}  }{2(1)}

x =\dfrac{8\sqrt{2}\pm\sqrt{128-92}  }{2}

x =\dfrac{8\sqrt{2} \pm\sqrt{36} }{2}

x =\dfrac{8\sqrt{2} \pm6}{2}

x =\dfrac{8\sqrt{2}+6 }{2} , \dfrac{8\sqrt{2}-6 }{2}

x = \dfrac{8\sqrt{2} }{2} +\dfrac{6}{2} , \dfrac{8\sqrt{2} }{2} -\dfrac{6}{2}

x = 4\sqrt{2}+3,4\sqrt{2} -3

Hence verified !!

Similar questions