Math, asked by sushilasunkariya, 3 months ago

3. If the two angles of a triangle are 45° and 55°, find the third angle. What type of triangle is it?
4. If the vertex angle of an isosceles triangle is 90°, then find the base angles.
5. The angles of a triangle are in the ratio of 2:3:5. Find the angles. What type of triangle is it?
6. Find the measure of each angle of an equilateral triangle.​

Answers

Answered by adhithyavinay
0

Answer:

Third angel = 180°- sum of two angle

=180°- (45°+55°)

= 189°-100°

=80°

Third angel is 80°

4) Sum of two equal angles = 180-90

= 90

As the two angles are same so the base angle = 90/2 = 45

Step-by-step explanation:

i hope it will be very helpful

Answered by SachinGupta01
11

Solution - 3

 \bf \:  \underline{Given} :

 \sf \: The  \: angle  \: of \:   \:  \triangle  \: are \:  45\degree  \: and \:  55\degree.

 \bf \:  \underline{To  \: find} :

 \sf \: We \: have \: to \: find  \: \: the \: third \: angle.

 \sf \: We \: also \: have \: to \: tell \: that \: which \: type \: of \: \triangle \: is \: it.

 \bf \: As \: we \: know \: that,

 \boxed{  \pink{\sf \: Sum \: of \: interior  \: angle \: of  \: a  \: \triangle = 180 \degree}}

 \sf \: Let \: the \: third \: angle \: be  \: x.

 \sf \: Now,

 \sf \: 45\degree  +  55\degree + x = 180\degree

 \sf \: 100\degree + x = 180\degree

 \sf \:x = 180\degree - 100\degree

 \underline{ \red{ \sf \:x = 80\degree }}

 \sf \: So, \: the \: third \: angle \: of \: the \: triangle \: is \: 80  \degree

 \underline{ \red{ \sf \: Hence, \: It \: is \: an \: acute \: angled \: triangle.}}______________________________________

Solution - 4

 \bf \:  \underline{Given} :

 \sf \: The \: vertex  \: angle \: of \: an \: isosceles \: triangle \: is \: 90\degree. \:

 \bf \:  \underline{To  \: find} :

 \sf \: We \: have \: to \: find \: the  \: base \: angle.

 \bf \: We \: know \: that,

 \boxed{  \pink{\sf \: Two \: angles \: of \: an   \: isosceles \: triangle \: are \: equal. }}

 \sf \: Let \: the \: base \: base \: angle \: be \: x .

 \sf \: Then,

 \sf \: x + x + 90\degree = 180\degree

 \sf \: 2x + 90\degree = 180\degree

 \sf \: 2x  = 180\degree -  90\degree

 \sf \: 2x  =   90\degree

 \sf \: x  =    \dfrac{90}{2}

 \sf \: x  =    45\degree

 \underline{ \red{ \sf \: Hence  \: the  \: base \:  angle = 45 \degree}}

______________________________________

Solution - 5

 \bf \:  \underline{Given} :

 \sf \: The  \: angles \: of \: a \:  \triangle \: are  \: in \: the \: ratio \: of \: 2:3:5.

 \bf \:  \underline{To  \: find} :

 \sf \: We \: have \: to \: find \: the  \: angles.

 \sf \: We \: also \: have \: to \: tell \: that \: which \: type \: of \: \triangle \: is \: it.

 \bf \: Let  \: us \: assume \: that :

 \sf \: Let  \: the  \: angles \: of \: a \:  \triangle \: are \: 2x,  \: 3x \: and \: 5x.

 \bf \: As \: we \: know \: that,

 \boxed{  \pink{\sf \: Sum \: of \: interior  \: angle \: of  \: a  \: \triangle = 180 \degree}}

 \sf \: Hence  \: \angle A + \angle B + \angle C = 180 \degree.

 \sf \:  2x +  3x +  5x = 180 \degree

 \sf \:  10x = 180 \degree

 \sf \:  x =  \dfrac{180 }{10}

 \sf \:  x =  18

 \sf \: Hence,

 \sf \: First \:  angle = 2  \:x \: 18 =  \underline{\red{ 36 \degree}}

 \sf \: Second  \: angle = 3 \: x \: 18=  \underline{ \red{54 \degree}}

 \sf \: Third \: angle = 5 \: x \: 18 =  \underline{ \red{90 \degree}}

 \underline{ \red{ \sf \: As \: the\: third \: angle \: is \: 90 \degree,  \: so  \: it  \: a  \: right \:  angled \:  \triangle. }}

______________________________________

Solution - 6

 \bf \:  \underline{To \:  find} :

 \sf \: We \:  have \:  to  \: find  \: the  \: measure  \: of  \: each \:   \angle \:  of  \: an  \: equilateral \:  \triangle.

 \sf \: We \:  know  \: that,

 \boxed{  \pink{\sf \: In  \: equilateral \:  \triangle,  \: all  \: sides  \: are \:  same. }}

 \sf \: Then  \: each \:  angle = \dfrac{180}{3}

 \sf \:  \longrightarrow \:  \dfrac{180}{3}   \: =   \: 60 \degree

 \underline{ \red{ \sf \: So,  \: all  \: angles \:  are \:  of  \: 60 \degree. }}

______________________________________

Similar questions