Math, asked by ruhi8138, 10 months ago

3. If x^2 + y^2 = 29 and x – y = 3, then find the value of x^3– y^3. * 1 point

Answers

Answered by RvChaudharY50
5

Gɪᴠᴇɴ :-

  • x² + y² = 29
  • (x - y) = 3

Tᴏ Fɪɴᴅ :-

  • x³ - y³ = ?

Sᴏʟᴜᴛɪᴏɴ :-

→ (x - y) = 3

Squaring Both Sides we get,

→ (x - y)² = 3²

using (a - b)² = a² + b² - 2ab in LHS , we get,

→ x² + y² - 2xy = 9

Putting given value of x² + y² Now,

→ 29 - 2xy = 9

→ 2xy = 29 - 9

→ 2xy = 20

Dividing Both sides by 2,

xy = 10.

______________

Now, we Have :-

x² + y² = 29

→ x - y = 3

→ xy = 10

we know That, ( - ) = (a - b)( + + ab)

Therefore,

(x³ - y³) = (x - y)(x² + y² + xy)

→ (x³ - y³) = 3(29 + 10)

→ (x³ - y³) = 3 * 39

→ (x³ - y³) = 117 (Ans.)

Answered by Anonymous
10

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

\star \: {\sf{\green{ {x}^{2}  +  {y}^{2}  = 29}}}

\star \: {\sf{\green{ x - y =  3}}}

{\bf{\blue{\underline{To:Find:}}}}

\star \: {\sf{\green{  {x}^{3}  -  {y}^{3} }}}

{\sf{\underline{\blue{Now,}}}}

{\implies{\bf{ x - y = 3}}}

\star \: {\bf{ squaring \: both \: side}}

{\implies{\bf{ (x - y)^{2} = ( {3})^{2}  }}}

{\implies{\bf{ {x}^{2}  +  {y}^{2}  - 2xy = 9}}}

{\sf{\underline{\blue{we \:  \: know \: that \:  {x}^{2} +  {y}^{2}  = 29 ,}}}}

{\implies{\bf{ 29 - 2xy = 9}}}

{\implies{\bf{   - 2xy = 9 - 29}}}

{\implies{\bf{   - 2xy =  - 20}}}

{\implies{\bf{ xy =  \frac{20}{2} }}}

{\implies{\bf{ \boxed{ xy =   10}}}}

{\sf{\underline{\blue{Now,}}}}

{\star \: {\bf{  {x}^{3} -  {y}^{3}  =  ( x - y)( {x}^{2} +  {y}^{2}   + xy)}}}

{\implies{\bf{ (x - y)  \big[( {x}^{2}  +  {y}^{2}) + (xy) \big]}}}

{\implies{\bf{ (3) \big[( 29) + (10)]}}}

{\implies{\bf{ (3) \times  \big[39]}}}

{\implies{\bf{ 117}}}

{\bf{\blue{\underline{Hence \: \:  \:   {x}^{3} -  {y}^{3}  = 117 Ans}}}}

Similar questions