Math, asked by krishnasreedharan54, 1 month ago

3. If y sin (msin x) prove (1-x²) v-xy₁+m²y =0​

Answers

Answered by mathdude500
6

\large\underline{\sf{Given \:Question - }}

\bf :\longmapsto\:If \: y = sin[m {sin}^{ - 1}x], \: prove \: that

\rm :\longmapsto\: {(1 - x}^{2})y_2 - xy_1 + {m}^{2}y = 0

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y = sin[m {sin}^{ - 1}x]

can be rewritten as

\rm :\longmapsto\: {sin}^{ - 1}y = m \:  {sin}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx} {sin}^{ - 1}y =\dfrac{d}{dx} m \:  {sin}^{ - 1}x

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}}

So, using this, we get

\rm :\longmapsto\: \dfrac{1}{ \sqrt{1 -  {y}^{2} } } \dfrac{d}{dx}y =m\dfrac{d}{dx}\:  {sin}^{ - 1}x

\rm :\longmapsto\: \dfrac{1}{ \sqrt{1 -  {y}^{2} } } y_1 =m \times \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm :\longmapsto\:y_1 \sqrt{1 -  {x}^{2} } = m \sqrt{1 -  {y}^{2} }

On squaring both sides, we get

\rm :\longmapsto\: {y_1}^{2}(1 -  {x}^{2}) =  {m}^{2}(1  -   {y}^{2})

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} {y_1}^{2}(1 -  {x}^{2}) =  {m}^{2}\dfrac{d}{dx}(1  -   {y}^{2})

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}k = 0}}}

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}}

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}uv =u\dfrac{d}{dx}v  + v\dfrac{d}{dx}u}}}

So, using this, we get

\rm :\longmapsto\: {y_1}^{2}\dfrac{d}{dx}(1 -  {x}^{2}) +  {(1 - x}^{2})\dfrac{d}{dx} {y_1}^{2} =  {m}^{2}(0 - 2yy_1)

\rm :\longmapsto\: {y_1}^{2}(0 - 2x) +  {(1 - x}^{2})2y_1y_2 =  {m}^{2}(0 - 2yy_1)

\rm :\longmapsto\:  - 2x{y_1}^{2}+  {(1 - x}^{2})2y_1y_2 =  - 2 {m}^{2}yy_1

\rm :\longmapsto\: 2y_1\bigg[ - xy_1+  {(1 - x}^{2})y_2 \bigg]=  - 2 {m}^{2}yy_1

\rm :\longmapsto\: - xy_1+  {(1 - x}^{2})y_2 =  -  {m}^{2}y

\rm :\longmapsto\: {(1 - x}^{2})y_2 - xy_1 + {m}^{2}y = 0

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\ \sf  {cos}^{ - 1}x   & \sf  \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf    {tan}^{ - 1}x  & \sf   \dfrac{1}{ {x}^{2}  + 1} \\ \\ \sf   {cot}^{ - 1}x   & \sf  \dfrac{ - 1}{ {x}^{2}  + 1}  \end{array}} \\ \end{gathered}

Similar questions