3. In a casino in Blackpool there are two slot machines: one that pays out 10 % of the time, and one that pays out 20 % of the time. Obviously, you would like to play on the machine that pays out 20 % of the time but you do not know which of the two machines is the more generous. You thus adopt the following strategy: you assume initially that the two machines are equally likely to be the generous machine. You then select one of the two machines at random and put a coin into it. Given that you loose that first bet estimate the probability that the machine you selected is the more generous of the two machines.
Answers
Answer:
answer it might be helpful to you
Answer:
Remember the movie National Lampoon's Vegas Vacation, when gambling fever consumes Chevy Chase's character, Clark W. Griswold? He goes on a losing streak to beat all losing streaks while his son, Rusty, wins four cars by playing the slot machines. Maybe Clark would have done better if he had read Probability For Dummies. In this article, you'll discover the basics of slot machines and how they work, so that you can get past the myths and develop a sound strategy based on probability.
Understanding average
In This Article
Remember the movie National Lampoon's Vegas Vacation, when gambling fever consumes Chevy Chase's character, Clark W. Griswold? He goes on a losing streak to beat all losing streaks while his son, Rusty, wins four cars by playing the slot machines. Maybe Clark would have done better if he had read Probability For Dummies. In this article, you'll discover the basics of slot machines and how they work, so that you can get past the myths and develop a sound strategy based on probability.
Understanding average payout
When casinos advertise that their slot machines pay out an average of 90 percent, the fine print they don't want you to read says that you lose 10 cents from each dollar you put into the machines in the long term. (In probability terms, this means that your expected winnings are minus 10 cents on every dollar you spend every time the money goes through the machines.)
Suppose you start with $100 and bet a dollar at a time, for example. After inserting all $100 into the slot, 100 pulls later, you'll end up on average with $90, because you lose 10 percent of your money. If you run the $90 back through the machine, you'll end up with 90 percent of it back, which is 0.90 x 90 = $81. If you run that amount through in 81 pulls, you'll have $72.90 afterward (0.90 x 81 = 72.90). If you keep going for 44 rounds, on average, the money will be gone (unless you have the luck of Rusty Griswold).
How many pulls on the machine does your $100 give you at this rate? Each time you have less money to run through the machine, so you have fewer pulls left. If you insert $1 at a time, you can expect 972 total pulls in the long term with these average payouts (that's the total pulls in 44 rounds). But keep in mind that casinos are designing slot machines to go faster and faster between spins. Some are even doing away with the handles and tokens by using digital readouts on gaming cards that you put into the machines. The faster machines can play up to 25 spins per hour, and 972 spins divided by 25 spins per minute is 38.88 minutes. You don't have a very long time to enjoy your $100 before it's gone!