3. In the adjoining figure, points A,B,C,D are concyclic points of a circle with centre O. BOC = 60o, m(arc ADC) = 210o. Find the m(arc AB) and m(arc ABC)
Answers
Answered by
0
Answer:
m(arc EF) = ∠ECF = 70º (Measure of an arc is the measure of its central angle)
Now,
m(arc DE) = 360º − m(arc EF) − m(arc DGF)
⇒ m(arc DE) = 360º − 70º − 200º = 90º
Also,
m(arc DEF) = m(arc DE) + m(arc EF)
⇒ m(arc DEF) = 90º + 70º = 160º
Thus, the m(arc DE) and m(arc DEF) is 90º and 160º, respectively.
Similar questions