3^ log base 3 of log √x - log x - log^x - 3 = 0
Answers
Answer:
✌❤
Step-by-step explanation:
Using property of log: alog(base"a")(x)=x
So, (3(log(√x−1)"to"base"3)=sqrt(x−1)
Similarly, (3log(x−6)"to"base"3)=x−6
So, sqrt(x−1)<x−6+3
sqrt(x−1)<x−3
x−1<x2−6x+9
x2−7x+10>0
x2−5x−2x+10>0
(x−5)(x−2)>0
So, x>5 and x<2
But x>1 due to sqrt(x−1) term in the equation…
Also x>6 due to log(x−6) term in the equation…
So, the final answer should be x>6
Hope this was helpful..
Regards
Answer:
Step-by-step explanation:
3log3logx√−logx+(logx)2−3=03log3logx-logx+(logx)2-3=0
We know, alogab=balogab=b, so our equation becomes,
⇒logx−−√−logx+(logx)2−3=0⇒logx-logx+(logx)2-3=0
⇒12logx−logx+(logx)2−3=0⇒12logx-logx+(logx)2-3=0
⇒(logx)2−logx2−3=0⇒(logx)2-logx2-3=0
⇒2(logx)2−logx−6=0⇒2(logx)2-logx-6=0
⇒2(logx)2−4logx+3logx−6=0⇒2(logx)2-4logx+3logx-6=0
⇒(2logx+3)(logx−2)=0⇒(2logx+3)(logx-2)=0
⇒logx=−32andlogx=2⇒logx=-32andlogx=2
⇒x=e−32andx=e2.