Math, asked by NoExist, 3 months ago

3
NAVNEET 21 M. L.Q. SETS : MATHEMATICS & STATISTICS-STD. XII (Science)
(ii) If a and b are unit vectors, then what is angle between a and b for
3a-b to be a unit vector?
(a) 30°
(b) 45°
(c) 60°
(d) 90°​

Answers

Answered by mathdude500
6

Appropriate Question

\red{ \sf \: If \: \vec{a} \: and \: \vec{b} \: are \: unit \: vectors, then \: what \: is \: the \: angle} \\  \red{ \sf \: between \: \vec{a} \: and \: \vec{b} \: so \: that \:  \sqrt{3}\vec{a} - \vec{b} \: is \: unit \: vector. \:  }

Basic Identities Used :-

\boxed{ \sf \:\vec{a} \: is \: unit \: vector \implies \:  |\vec{a}| = 1}

\boxed{ \sf \:\vec{a}.\vec{a} =  { |\vec{a}| }^{2}}

\boxed{ \sf \:\vec{a}.\vec{b} = \vec{b}.\vec{a}}

\boxed{ \sf \:\vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| cos\theta }

\green{\large\underline{\bf{Solution-}}}

Given that

{ \sf \:\vec{a} \: is \: unit \: vector \implies \:  |\vec{a}| = 1}

{ \sf \:\vec{b} \: is \: unit \: vector \implies \:  |\vec{b}| = 1}

Also given that

\rm :\longmapsto\:{ \sf \: \sqrt{3} \vec{a} \:  -  \: \vec{b} \: is \: unit \: vector }

\rm :\longmapsto\: | \sqrt{3} \vec{a} - \vec{b}|  = 1

On squaring both sides, we get

\rm :\longmapsto\: | \sqrt{3} \vec{a} - \vec{b}| ^{2}  = 1

\rm :\longmapsto\:( \sqrt{3} \vec{a} - \vec{b}).( \sqrt{3} \vec{a} - \vec{b}) = 1

\rm :\longmapsto\:3\vec{a}.\vec{a}  -   \sqrt{3} \vec{a}.\vec{b} -  \sqrt{3} \vec{b}.\vec{a} + \vec{b}.\vec{b} = 1

\rm :\longmapsto\:3 |\vec{a}|^{2}  -  \sqrt{3} \vec{a}.\vec{b} -  \sqrt{3} \vec{a}.\vec{b} + { |\vec{b}| }^{2}  = 1

\rm :\longmapsto\:3 - 2 \sqrt{3} \:  \vec{a}.\vec{b} + 1 = 1

\rm :\longmapsto\:2 \sqrt{3}  \: \vec{a}.\vec{b} = 3

\rm :\longmapsto\:2  \sqrt{3}  \: |\vec{a}|  |\vec{b}| cos\theta  =  \sqrt{3}  \times  \sqrt{3}

\rm :\longmapsto\:2 \:  \times 1 \times 1 \times cos\theta  =  \sqrt{3}

\rm :\longmapsto\:cos\theta  = \dfrac{ \sqrt{3} }{2}

\bf\implies \:\theta  = 30 \degree

Hence,

  • Option (a) is correct.

Additional Information :-

\boxed{ \sf \:\vec{a}.\vec{b} = 0 \implies \: \vec{a} \:  \perp \: \vec{b}}

\boxed{ \sf \:\vec{a} \:  \perp \: \vec{b} \implies \: \vec{a}.\vec{b} = 0}

\boxed{ \sf \:If \: \vec{a} \times \vec{b} = \vec{0}, then \: \vec{a} \:  \parallel \: \vec{b}}

\boxed{ \sf \:If \: \vec{a} \:  \parallel \: \vec{b},  \: then \: \vec{a} \times \vec{b} = \vec{0}}

\boxed{ \sf \: |\vec{a} \times \vec{b}|  =  |\vec{a}|  |\vec{b}| sin\theta }

\boxed{ \sf \:\vec{a} \times \vec{a} = 0}

\boxed{ \sf \:\vec{a} \times \vec{b} =  -  \: \vec{b} \times \vec{a}}

Answered by prantikadesai
3

Answer:

ohk

ekv-nrbk-uxz

kar lo join

Similar questions