Math, asked by JMVarma6460, 4 months ago

3 pens and 4 books together cost rs 50 as 5 pens and 3 books together cost rs 54

Answers

Answered by ilov3myself
5

\Large{\underline{\underline{\mathfrak{Correct \: Question :}}}}

3 pens for books together cost ₹50 where 5 pens and 3 books together cost ₹54.Find the value of each pen and book

\Large{\underline{\underline{\mathfrak{Answer :}}}}

Given:

\qquad\qquad Cost of 3 pens and 4 books = 50

\qquad\qquad • Cost of 5 pens and 3 books = 56

To Find:

\qquad\qquad • Cost of each pen and each book

\qquad\qquad\qquad\qquad━━━━━━━━━━━━━━━━━

Solution:

☯ Let the cost of Pens and Books, x and y respectively.Now we will apply, Elimination method to solve the question.

\qquad\qquad\qquad\qquad━━━━━━━━━━━━━━━━

\large\underline{\dag \: {\mathbf{ According \:  to \:  the \:  question:-}}}

\qquad • The equation that will form are :

\qquad\qquad\ : \implies\sf\ 3x + 4y = 50 \: - \: \left( eq.1 \right)

\qquad\qquad\implies\sf\ 5x + 3y = 56 \: - \: \left( eq.2 \right)

\qquadMultiplying (eq.1) by 5 and (eq.2) by 3 :

\qquad\qquad\ : \implies\sf\ 5 \times \:  \left( 3x + 4y = 50 \right)

\qquad\qquad\ : \implies\sf\ 15x + 20y = 250 \: - \: \left(eq.3 \right)

\qquad\qquad\ : \implies\sf\ 3 \times \:  \left(5x + 3y = 56 \right)

\qquad\qquad\ :\implies\sf\ 15x + 9y = 168 \: - \: \left(eq.4 \right)

\qquad • Now,subtract the (eq.3) from (eq.4),i.e. (eq.3) - (eq.4):

\qquad\qquad\ :\implies\sf\:\cancel{15x} + 20y = 250 \: - \: \left(eq.3 \right)

\qquad\qquad\ :\implies\sf\: (-)  \cancel{15x}  + (-) 9y = 168 \: - \: \left(eq.4 \right)

\qquad\qquad\sf\ : \implies\ 11y = 88

\qquad\qquad\sf\ : \implies\ y = \frac{\cancel{11}}{\cancel{11}}

\qquad\qquad\ : \implies{\underline{\boxed{\mathsf{\red{y = 8}}}}}

\qquad\qquad\qquad\qquad━━━━━━━━━━━━━━━━

\qquad • Now,put the the value of y in (eq.1)

\qquad\qquad\sf\ : \implies\:  3x + 4(8) = 50

\qquad\qquad\sf\ : \implies\: 3x + 32 = 50

\qquad\qquad\sf\ : \implies\: 3x = 50 - 32

\qquad\qquad\sf\ : \implies\: 3x = 18

\qquad\qquad\sf\ : \implies\: x = \frac{18}{3}

\qquad\qquad\ : \implies{\underline{\boxed{\mathsf{\red{ x = 6 }}}}}

\therefore\:\underline{\textsf{Hence, \: the \: cost \: of \: each \: pen  and \: book \: is \textbf{6,8}}}

Similar questions