3. Perimeter of a rectangle is 34cm. If its breadth is of 5 cm, find the length
find
each diagonal of it
Answers
Answered by
2
Answer:
2(l+b)=34cm
l+5=17
l=12 cm
l²+b²=d² (diagonal =d)
12²+5²=d²
144+25=d²
169=d²
√169=d
d=13 cm
Answered by
4
Given:
Perimeter of the rectangle = 34 cm
Breadth of the rectangle = 5 cm
To Find:
The length of the rectangle and the measurement of the diagonals.
Formula:
Perimeter of a rectangle = 2 ( Length + Breadth )
Pythagoras Theorem = AB^2 + BC^2 = AC^2
Solution:
Perimeter = 2 ( L + B ) = 34
Perimeter = 2 ( L + 5 ) = 34
Perimeter = L + 5 = 34/2 = 17
Perimeter = L = 17 - 5 = 12
Diagonals of a rectangle are equal.
By using Pythagoras Theorem, we get
Length^2 + Breadth^2 = Diagonal^2
or, 12^2 + 5^2 = Diagonal^2
or, 144 + 25 = Diagonal^2
or, √169 = Diagonal
or, 13 cm = Diagonal
Answer:
The length of the rectangle is 12 cm.
The measurement of the diagonals is 13 cm respectively.
Similar questions