Math, asked by thatojirajitha1983, 9 months ago

3.
Prove that (cosec A-sin A) (sec A-cos A)=1/tanA+cotA

Answers

Answered by SharmaShivam
6

Question:

\sf{Prove\:that}\\\sf{\left(cosecA-sinA\right)\left(secA-cosA\right)=\dfrac{1}{tanA+cotA}}

Identities Used:

\sf{cosecA=\dfrac{1}{sinA}}\\\sf{secA=\dfrac{1}{cosA}}\\\sf{1-sin^2A=cos^2A}\\\sf{1-cos^2A=sin^2A}\\\sf{sin^2A+cos^2A=1}\\\sf{tanA=\dfrac{sinA}{cosA}}\\\sf{cotA=\dfrac{cosA}{sinA}}

Solution:

\sf{Taking\:L.H.S.}

\sf{=\left(cosecA-sinA\right)\left(secA-cosA\right)}

\sf{=\left(\dfrac{1}{sinA}-sinA\right)\left(\dfrac{1}{cosA}-cosA\right)}

\sf{=\left(\dfrac{1-sin^2A}{sinA}\right)\left(\dfrac{1-cos^2A}{cosA}\right)}

\sf{=\dfrac{cos^2A.sin^2A}{cosA.sinA}}

\sf{=sinA.cosA}

\sf{Taking\:R.H.S.}

\sf{\dfrac{1}{\dfrac{sinA}{cosA}+\dfrac{cosA}{sinA}}}

\sf{\dfrac{sinA.cosA}{sin^2A+cos^2A}}

\sf{sinA.cosA}

\mathrm{L.H.S.=R.H.S.}

\sf{\bf{HENCE\:PROVED}}

Answered by mugdha10
1

Refer to the attachment above for your answer!!

Attachments:
Similar questions