Math, asked by heetpanchal2305, 3 months ago

` 3.Prove that:- `(sin A)/(1+cos A)+(sin A)/(1-Cos A)=2cosec A​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove \:  that :  \: \dfrac{sinA}{1 + cosA}  + \dfrac{sinA}{1 - cosA}  = 2cosecA

\large\underline{\sf{Solution-}}

Identities Used :-

 \boxed{ \bf \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}

 \boxed{ \bf \: 1 -  {cos}^{2} x =  {sin}^{2} x}

 \boxed{ \bf \: \dfrac{1}{sinx}  = cosecx}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:\: \dfrac{sinA}{1 + cosA}  + \dfrac{sinA}{1 - cosA}

\:  \:  \sf \: =  \:  \: sinA\bigg(\dfrac{1}{1  +  cosA}  + \dfrac{1}{1 - cosA}  \bigg)

\:  \:  \sf \: =  \:  \: sinA\bigg(\dfrac{1 -  \cancel{cosA} + 1 +  \cancel{cosA}}{(1 + cosA)(1 - cosA)}  \bigg)

\:  \:  \sf \: =  \:  \: sinA \: \bigg(\dfrac{2}{1 -  {cos}^{2} A}  \bigg)

\:  \:  \sf \: =  \:  \: sinA \times \dfrac{2}{ {sin}^{2} A}

\:  \:  \sf \: =  \:  \: \dfrac{2}{sinA}

\:  \:  \sf \: =  \:  \: 2cosec \: A

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \boxed{ \bf \:  {sin}^{2} x +  {cos}^{2} x = 1}

 \boxed{ \bf \:  {sec}^{2} x  -   {tan}^{2} x = 1}

 \boxed{ \bf \:  {cosec}^{2} x  -   {cot}^{2} x = 1}

 \boxed{ \bf \: secx = \dfrac{1}{cosx}}

 \boxed{ \bf \: tanx = \dfrac{sinx}{cosx} =  \dfrac{1}{cotx} }

 \boxed{ \bf \: cotx = \dfrac{cosx}{sinx} =  \dfrac{1}{tanx} }

Similar questions